
The

Book
for SILE version v0.15.5

Simon Cozens
Caleb Maclennan
Olivier Nicole
Didier Willis

& many more contributors...

Table of Contents
What is SILE? . 1
SILE versus MS Word and friends . 1
SILE versus TeX and company . 2
SILE versus InDesign and competitors . 3
Conclusion . 4

Getting Started . 5
Installing SILE . 5

macOS . 5

Arch Linux . 5

Fedora . 6

OpenSUSE . 6

Ubuntu . 6

NetBSD . 6

NixOS or under Nix on any platform . 6

Void Linux . 7

Running via Docker . 7

Installing from source . 8

Notes for Windows users . 11

Selecting a text editor . 11
Running SILE . 12

A basic document . 12

Let’s do something cool . 12

Running SILE remotely as a CI job . 13

Installing third-party packages . 14
Finding Lua version in use for running SILE . 14

SILE’s Input . 15
Concerning input formats . 15
The SIL flavor . 16

i

Defining the paper size . 16

Setting orientation as landscape . 17

Full bleed printing . 17

Ordinary text . 17

Commands . 19

Environments . 20

SIL grammar specifications . 20

The XML syntax . 21

Some Useful SILE Commands . 23
Fonts . 23

Document structure . 25

Chapters and sections . 25

Footnotes . 25

Paragraph indentation . 25

Horizontal spacing . 26

Vertical spacing . 26

Text alignment . 26

Line and page breaks . 27

Including other files and code . 28

Including raw inline content . 30

SILE Packages . 33
Loading a package . 33

The SILE ecosystem . 33

Graphics . 34

image . 34

svg . 36

converters . 36

Text & Characters . 37

dropcaps . 37

ii

lorem . 38

textcase . 38

unichar . 38

url . 38

gutenberg . 39

Colors . 39

color . 39

background . 40

Fillers & Rules . 40

leaders . 41

rules . 41

Boxes & Effects . 42

raiselower . 42

rebox . 42

rotate . 43

scalebox . 43

Mathematical formulas . 43

Specialized environments . 48

lists . 48

pullquote . 50

verbatim . 50

specimen . 51

boustrophedon . 51

chordmode . 52

Advanced font features . 52

features . 52

font-fallback . 53

Advanced line-spacing . 54

grid . 54

linespacing . 55

Document parts . 56

folio . 56

iii

footnotes . 57

tableofcontents . 57

Bibliographies & Indexes . 58

bibtex . 58

indexer . 60

Miscellaneous utilities . 60

date . 60

debug . 61

ifattop . 61

retrograde . 61

Frames and page layouts . 62

cropmarks . 62

frametricks . 62

twoside . 63

masters . 64

break-firstfit . 64

balanced-frames . 64

Low-level internal packages . 64

bidi . 64

color-fonts . 65

counters . 65

insertions . 66

infonode . 66

inputfilter . 67

chapterverse . 67

parallel . 68

autodoc . 68

pdf . 69

pdfstructure . 70

Highly experimental packages . 70

SILE Macros and Commands . 71

iv

A simple macro . 71
Macro with content . 72
Nesting macros . 73

SILE Settings . 75
Spacing settings . 76

Line spacing settings . 77

Word spacing settings . 77

Letter spacing settings . 78

Typesetter settings . 78
Paragraphing . 78

Automated italic correction . 79

Linebreaking settings . 80
Shaper settings . 81
Settings from Lua . 81

Multilingual Typesetting . 83
Selecting languages . 83
Direction . 83
Hyphenation . 84
Localization . 85
Support for specific languages . 86

Amharic . 86

Croatian . 86

Czech . 86

Esperanto . 86

French . 87

Polish . 87

Portuguese . 87

Slovak . 87

Spanish . 87

Turkish . 87

v

Japanese / Chinese . 87

Syllabic languages . 88

Uyghur . 88

The Nitty Gritty . 91
Measurements and lengths . 91

Boxes, glue, and penalties . 91

Kerns . 93

The typesetter . 93

Frames . 94

Designing Packages & Classes . 99
Designing a package . 99

Implementing a bare package . 100

Defining commands . 100

Defining settings . 102

Defining raw handlers . 102

Loading other packages . 103

Registering class hooks . 103

Designing a document class . 103

Implementing a bare class . 103

Defining commands, settings, etc. 104

Defining class options . 104

Changing the default page layout . 105

Modifying class output routines . 107

Interacting with class hooks . 107

Designing Inputters & Outputters . 111
Designing an input handler . 111

Initial boilerplate . 111

Content appropriation . 112

Content parsing . 113

vi

Inputter options . 114

Designing an output handler . 114

Advanced Class Files 1: SILE As An XML Processor 117
Handling titles . 117
Sectioning . 119

Further Tricks . 121
Parallel text . 121
Sidenotes . 123
SILE as a library . 127
Debugging . 128
Conclusion . 130

vii

Chapter 1
What is SILE?
SILE is a typesetting system. Its job is to produce beautiful printed documents from raw content. The
best way to understand what SILE is and what it does is to compare it to other systems which youmay
have heard of.

1.1 SILE versus MS Word and friends
When most people produce printed documents using a computer, they usually use desktop oriented
word processing software such as Microsoft Word, Apple Pages, or LibreOffice Writer. SILE is not a
word processor; it is a typesetting system. There are several important differences.

The job of a word processor is to produce a document that looks exactly like what you type on the
screen. By contrast, the job of a typesetting system is to take raw content and produce a document
that looks as good as possible. The input for SILE is a text document that includes instructions about
how the content should be laid out on a page. In order to obtain the typeset result, the input file(s)
must be processed to render the desired output.

Word processors often describe themselves as WYSIWYG: What You See Is What You Get. SILE is
cheerfully not WYSIWYG. In fact, you don’t see what you get until you get it. Rather, SILE documents
are prepared initially in a text editor—a piece of software which focuses on the text itself and not what
it looks like—and then run through SILE in order to produce a PDF document.

For instance, most word processors are built roughly around the concept of a page with a central
content area into which you type and style your content. The overall page layout is controlled by the
page size and margins and more fine tuning is done by styling the content itself. You typically type
continuously and when you hit the right margin, your cursor will automatically jump to the next line.
In this way, the user interface shows you where the lines on the printed page will break.

In SILE the overall page layout is defined with a paper size and a series of one or more content
frames. These framedescriptions provide the containerswhere contentwill later be typeset, including
information about how it might flow from one frame to the next. Content is written separately, and
SILE works out automatically how it best flows from frame to frame and from page to page. So when
you are preparing content for SILE, you don’t know where the lines will break until after it has been
processed. Youmay use your text editor to type and type and type as long a line as you like, and when
SILE comes to process your instructions, it will consider your input several times over in order to
work out how to best to break the lines to form a paragraph. For example, if after one pass it finds
that it has ended two successive lines with a hyphenated word, it will go back and try again and see
if it can find better layout.

The same idea applies to page breaks. When you type into a word processor, at some point you
will spill over onto a new page. When preparing content for SILE, you keep typing, because the page
breaks are determined after considering the layout of the whole document.

In other words, SILE is a language for describing what you want to happen, and an interpreter that
will make certain formatting decisions about the best way for those instructions to be turned into
print.

1.2 SILE versus TeX and company
“Ah,” some people will say, “that sounds very much like TeX!”1

And it’s true. SILE owes an awful lot of its heritage to TeX. It would be terribly immodest to claim
that a little project like SILE was a worthy successor to the ancient and venerable creation of the
Professor of the Art of Computer Programming, but… really, SILE is basically amodern rewrite of TeX.

TeX was one of the earliest typesetting systems, and had to make a lot of design decisions some-
what in a vacuum. Some of those design decisions have stood the test of time—TeX is still an extremely
well-used typesetting system more than forty years after its inception, which is a testament to its
design and performance—but many others have not. In fact, most of the development of TeX since
Knuth’s era has involved removing his early decisions and replacing them with technologies which
have become the industry standard: we use TrueType fonts, not METAFONTs (xetex); PDFs, not DVIs
(pstex, pdftex); Unicode, not 7-bit ASCII (xetex again); markup languages and embedded program-
ming languages, not macro languages (xmltex, luatex). At this point, the parts of TeX that people
actually use are (1) the box-and-glue model, (2) the hyphenation algorithm, and (3) the line-breaking
algorithm.

SILE follows exactly in TeX’s footsteps for each of these three areas that have stood the test of
time; it contains a slavish port of the TeX line-breaking algorithm which has been tested to produce
exactly the same output as TeX given equivalent input. But as SILE is itself written in an interpreted
language,2 it is very easy to extend or alter the behavior of the SILE typesetter.

For instance, one of the things that TeX can’t do particularly well is typesetting on a grid. This a
must-have feature for anyone typesetting bibles and other documents to be printed on thin paper.
Typesetting on a gridmeans that each line of text will line up between the front and back of each piece
of paper producing much less visual bleed-through when printed on thin paper. This a fairly difficult
task to accomplish in TeX. There are various solutions trying to address it, but they are complex and
have limitations. In SILE, the core behaviors of the typesetter itself can easily be altered, even on the
fly in a document. There is a reasonably short add-on package shipped with SILE by default to enable
grid typesetting.

In fact, almost nobody uses plain TeX—they all use LaTeX equivalents.3 Additionally they leverage

1. Except that, being TeX users, they will say “Ah, that sounds very much like TEX!”
2. And if the phrase TeX capacity exceeded is familiar to you, you should already be getting excited.
3. Such as pdflatex, xelatex, lualatex, and context.

What is SILE?

2

a huge repository of packages available from the The Comprehensive TeX Archive Network (CTAN)
archive. SILE does not benefit from the large ecosystem and community that has grown up around
TeX.4 In that sense, TeX will remain ahead of SILE for some time to come. But in terms of core capabil-
ities, SILE aims at being at least equivalent to TeX.

1.3 SILE versus InDesign and competitors
The other category of tool that people reach for when designing printed material on a computer
desktop publishing software (DTP). Adobe's InDesign is a prominent package in this space, but many
others exist. Affinity Publisher is a newcommer but popular alternative. Old timers and newspaper
publishers will remember QuarkXPress. Scribus is a capable Open Source entry in this space.

DTP software is similar to word processing software in that they
are both graphical and largely WYSIWYG, but the paradigm is differ-
ent. The focus is usually less on preparing the content than on laying
it out on the page—you click and drag to move areas of text and im-
ages around the screen.

InDesign is a complex, expensive, commercial publishing tool.
SILE is a free, open source typesetting tool which is entirely text-
based; you enter commands in a separate editing tool, save those
commands into a file, and hand it to SILE for typesetting. And yet the
two systems do have a number of common features.

In InDesign, text is flowed into frames on the page. On the left, you
can see an example of what a fairly typical InDesign layoutmight look
like. SILE also uses the concept of frames to determine where text

should appear on the page, and so it’s possible to use SILE to generate advanced and flexible page
layouts.

Another thingwhich people use InDesign for is to turn structured data in XML format—catalogues,
directories and the like—into print. The way you do this in InDesign is to declare what styling should
apply to each XML element, and as the data is read in, InDesign formats the content according to the
rules that you have declared.

You can do the same thing in SILE, except you have a lot more control over how the XML elements
get styled, because you can run any SILE command you like for a given element, including calling
out to Lua code to style a piece of XML. Since SILE is a command-line filter, armed with appropriate
styling instructions you can go from an XML file to a PDF in one shot.

In the final chapters of this book, we’ll look at some extended examples of creating a class file for
styling a complex XML document into a PDF with SILE.

4. Nevertheless, SILE does have a small ecosystem of third-party packages—More on the topic later.

1.4 Conclusion

3

1.4 Conclusion
SILE5 takes some textual instructions and turns them into PDF output. It has features inspired by TeX
and InDesign, but seeks to be more flexible, extensible and programmable than either of them. It’s
useful for typesetting structured content whether they are documents written in the SIL input syntax
(such as this very documentation), XML, or in some other structured data syntax that needs styling
and outputting.

5. In case you’re wondering, the author pronounces it /saɪəl/, to rhyme with “trial”.

What is SILE?

4

Chapter 2
Getting Started
To begin harnessing the power of SILE, now that we have covered some of its key aspects and objec-
tives, let’s dive into installing it on your computer, and set up everything you need to start typesetting
documents.

2.1 Installing SILE
Ready-to-use packages are available for macOS and many Linux distributions. Details for those we
know about are listed in the sections below. If your Linux distribution doesn’t have native packages,
fear not! You can also use either Linuxbrew or Nix packaging.

For other operating systems, you will need to download and compile the source code yourself,
following the steps outlined below. Alternatively, Docker containers are available for use on any com-
patible system.

2.1.1 macOS

For macOS users, the recommended method for installing SILE is through the Homebrew package
manager. Once Homebrew is up and running (see http://brew.sh), you can install SILE effortlessly
by running:

$ brew install sile

Additionally, you have the option to compile SILE from the latest (unreleased) source code:

$ brew install sile --HEAD

The brew package manager is also available as Linuxbrew for many Linux distributions. As an al-
ternative, the nix package manager is also available for macOS; see below.

2.1.2 Arch Linux

Arch Linux (and derivatives such as Manjaro, Parabola, and others) have prebuilt packages in the
official package repository:

$ pacman -S sile

A VCS package is also available as sile-git to build from the latest Git commit. This may be built
and installed like any other AUR1 package.

1. https://wiki.archlinux.org/title/Arch_User_Repository

2.1.3 Fedora

A COPR repository2 is available for Fedora users with packages of SILE and all the necessary depen-
dencies including fonts. Fedora 36 and Fedora 37 are supported. There is work in progress to get the
packages added to the official Fedora repository.

$ dnf copr enable jonny/SILE

$ dnf install sile

2.1.4 OpenSUSE

OpenSUSE has official packages ready to install the usual way:

$ zypper install sile

2.1.5 Ubuntu

A PPA3 is available for Ubuntu users with packages of SILE and all the necessary dependencies. We
introduced support starting with Bionic (18.04) and maintain packages for all Ubuntu release series
since for as long as they are supported by Canonical.

$ add-apt-repository ppa:sile-typesetter/sile

$ apt-get update

$ apt-get install sile

2.1.6 NetBSD

For NetBSD, package sources are available in print/sile. Use the usual command bmake install to
build and install. A binary package can be installed using pkgin:

$ pkgin install sile

2.1.7 NixOS or under Nix on any platform

In addition to NixOS, the nix package manager is available as a standalone package manager onmany
platforms including most Linux and BSD distributions, macOS, and even for Windows via WSL, and so
presents an alternative way to run SILE on most systems.

The silepackage is available in both the stable andunstable channels, the unstable channel having
the latest stable SILE releases and the stable channel being frozen on NixOS releases. You can use all

2. https://copr.fedorainfracloud.org/coprs/jonny/SILE/
3. https://launchpad.net/~sile-typesetter/+archive/ubuntu/sile

Getting Started

6

the usual Nix tricks, including adding SILE into a nix shell environment or executing it directly with
nix run.

$ nix shell nixpkgs/nixpkgs-unstable#sile

$ sile <arguments>

$ nix run nixpkgs/nixpkgs-unstable#sile -- <arguments>

The SILE source repository is also a valid Nix Flake4 which means you can run any specific version
or the latest unreleased development code directly:

$ nix run github:sile-typesetter/sile/v0.15.0 -- <arguments>

$ nix run github:sile-typesetter/sile -- <arguments>

2.1.8 Void Linux

Void Linux packages are available in the default package manager.

$ xbps-install sile

2.1.9 Running via Docker

Another way of getting SILE up and running in a pre-compiled state is to use prebuilt Docker con-
tainers. If your system has Docker installed already, you can run SILE simply by issuing a run com-
mand. The first time it is used Docker will fetch the necessary layers and assemble the image for you.
Thereafter, only a small amount of CPU time and memory overhead goes into running the container
compared to a regular system install.

The catch is that because SILE is running inside the container, in order to do anything useful with
it you must first pass in your sources (including things like fonts) and give it a way to write files back
out. The easiest way to do that is by mounting your entire project inside the container. This makes
the actual invocation command quite a mouthful. For most shells, a single alias can be created to hide
that complexity and make it pretty simple to run:

$ alias sile='docker run -it --volume "$(pwd):/data" siletypesetter/sile:latest'

$ sile input.sil

Docker images are tagged to match releases (e.g. v0.15.0). Additionally the latest release will be
tagged latest, and a master tag is also available with the freshest development build. You can sub-
stitute latest in the alias above to run a specific version.

One notable issue with using SILE from a Docker container is that by default it will not have access
to your system’s fonts. To work around this you can map a folder of fonts (in any organization usable
by fontconfig) into the container. This could be your system’s default font directory, your user one, a

4. https://wiki.nixos.org/wiki/Flakes#Installing_flakes

7

folderwith project specific resources, or anything of your choosing. You can seewhere fonts are found
on your system using fc-list. The path of your choosing from the host system should be mounted as
a volume on /fonts inside the container like this:

$ docker run -it --volume "/usr/share/fonts:/fonts" --volume "$(pwd):/data"
siletypesetter/sile:latest

Armed with commands (or aliases) like these to take care of the actual invocation, you should be
able to use all other aspects of SILE as documented in the rest of the manual. Just be aware when
it comes to things like fonts, images, or other resources about where your files are relative to the
container.

2.1.10 Installing from source

Downloads of SILE can be obtained from the home page at http://www.sile-typesetter.org/.

SILE is completely programmable using the Lua programming language. As of v0.15.0, the CLI you
actually execute is a Rust binary with a Lua VM built in. (For compatibility and demonstration pur-
poses a pure Lua version of the CLI is still available as sile-lua.) The Rust binary can be built based
on your system’s Lua sources or use its own vendored Lua sources. All SILE’s Lua code takes a lowest-
common-denominator approach to Lua compatibility. Any of Lua 5.1, 5.2, 5.3, 5.4, or LuaJIT (2.0, 2.1,
or OpenResty) are fully supported. Compiling it tomatch your system’s Lua version has the advantage
of making it easy to access system installed Lua Rocks, but this is not a requirement.

Compiling from sources will require both a Rust toolchain and Lua sources. At runtime no Rust
tooling is required, and the system Lua interpreter is not actually used.

It also relies on external libraries to access fonts and write PDF files. HarfBuzz (minimum version
2.7.4) should be available from your operating system’s package manager. For HarfBuzz to work you
will also need fontconfig installed. SILE also requires the icu libraries for Unicode handling. SILE
provides its own PDF creation library, which has its own requirements: fontconfig, zlib and libpng.

Even if building SILE from source, we suggest you use your distributions’s package manager to
install as many of the dependencies as possible. Most distros will have all of the system library de-
pendencies and some of them will also have packages for some or all of the Lua dependencies. The
./configure script will prompt for any dependencies that are missing, but it well only suggest the
generic names of tools and libraries you will need. You will need to search the package repositories
for the correct package names. Note that many distributions separate "development" or "library"
packages from main ones. For example if your distro has "icu" and "libicu-dev" — for the purpose of
building SILE you’ll need the latter; Once you have built it, it will only need the former to run.

There are a large number of Lua dependencies required to run SILE. Youmay either install them to
your system using your system’s packagemanager or luarocks, or let the SILE build process fetch and
bundle them for you. (This is the default unless you specify otherwise.) You cannot mix and match
these two methods; either the system path has to have all the dependencies, or all of them will be
bundled with SILE.

Getting Started

8

If you choose to install the Lua dependencies to your system, youmay use any combination of your
system’s packages and installing them via luarocks install. The easiest way is to let Luarocks figure
it out based on the included Rockspec file:

$ luarocks install --only-deps sile-dev-1.rockspec

Note that the luasec package requires OpenSSL libraries on your system in order to compile. On
some systems such as macOS you may need to configure the location of the header files manually to
install it:

$ luarocks install luasec OPENSSL_DIR=...

Once you have these requirements in place, you should then be able to unpack the file that you
downloaded from SILE’s home page, change to that directory,5 and configure the build environment.

If you supplied all the Lua dependencies yourself, run:

$./configure --with-system-luarocks

Otherwise to go with default of bundling them, just run:

$./configure

Also note that by default, the build process will use a vendored copy of fresh Lua sources. This will
probably result in a different version of Lua than the default on your system. In the event you want it
to exactly match, you'll need to have the development headers installed matching your system Lua.
Once available, add this flag to your configuration:

$./configure --with-system-lua-sources

Normally a source build will not actually run until after it is installed. If you want to be able to run
it from the source directory without installing it, it is important to configure it for that ahead of time.
Setting up the run-time paths such that the source directory are checked allows SILE to run in place after
building without installing. This is useful if you want to experiment with running SILE and/or plan on
modifying or developing SILE itself. Being able to tweak the sources and re-run SILE immediately to check
the difference is much faster than having to install after each tweak. You can add --datarootdir=$(cd
..;pwd) which will enable the compiled binary to run directly from the source directory.

5. If you downloaded a copy of the SILE source by cloning the git repository rather than downloading one of
the release packages, you will also need to run ./bootstrap.sh to setup the configure script at this point before
continuing to the next step.

9

Alternatively another useful option is --enable-developer-mode. This will also accomplish the
path handling change (so you don’t have to use both) but takes it a few steps farther. It also enables
checks on extra dependencies needed for testing SILE. These can be useful whether just to hack on it
for your own use or contribute upstream, but also not all of the tooling is required. For example (among
other things) you may not wish to rebuild the Docker image, lint the Lua files, or test the Flake. Individ-
ual checks can be skipped: --enable-developer-mode NIX=false DOCKER=false LUACHECK=false.
Using this the developer mode option also enables a number of targets that wouldn’t normally be needed
by end-users, such as make regressions.

By default SILE looks for a LuaJIT installation at configure time. This default is because running it under
LuaJIT is nearly twice as fast as under PUC Lua versions. That being said, all SILE’s Lua code takes a
lowest-common-denominator approach to Lua compatibility. Any of Lua 5.1, 5.2, 5.3, 5.4, or LuaJIT (2.0,
2.1, or OpenResty) are fully supported.

If your system either does not have LuaJIT or you prefer to use a version of PUC lua, you can ask the
configure process to pass on the LuaJIT detection:

$./configure --without-luajit

Keep in mind that while SILE and all its dependencies are tested to work on any interpreter, any Lua
code you write for your project will need to be compatible with whatever version you choose. Several
shims are provided to keeps things compatible, but it is also possible to write Lua expressions that only
work in some VMs. The vast majority of Lua code will be fine, but there are a few limitations.

If that command was successful, you can now build SILE itself:

$ make

Most users of SILE will want to install the sile command and SILE’s library files onto their system.
This can be done with:

$ make install

Now the sile command will be available from any directory.

If you wish you, can skip the install step and use the compiled SILE executable directly from the source
directory. As configured above, this will only work from a shell with the CWD set to the SILE source. To
make it usable from anywhere, you can configure it with the source directory baked in as the installation
location.

$./configure --datarootdir=$(cd ..;pwd)

$ make

Now to run SILE from anywhere you just need to supply the full path to the source directory.

$ /full/path/to/sile/sile

Getting Started

10

2.1.11 Notes for Windows users

Nobody is currently maintaining Windows compatibility in SILE and we expect the state to be a bit
broken. At present there is no Windows installer. Unless you are experienced building software on
Windows, it is probably best to use one of the Linux-based methods under WSL (Windows Subsystem
for Linux).

There are persistent rumors from credible users that say they have gotten it working, but the
exact steps they used to make it happen are a bit elusive. We would be happy to see better support,
but none of the current developers are Windows users or developers. If anyone wants to help in this
department, we’d be happy to facilitate contributions.

According to the rumors, SILE may be built on Windows using CMake and Visual Studio. Addi-
tionally some Windows executables are supposed to be generated using Azure for every commit. You
may download these executables by selecting the latest build from https://simoncozens-github.

visualstudio.com/sile/_build and downloading the “sile” artifact from the Artifacts drop down.

2.2 Selecting a text editor
A SILE document is just a plain text file. When you create your own SILE files, you will need to create
them in a plain text editor. Trying to create these files in a word processor such asWordwill not work,
as they will be saved with the word processor’s formatting codes rather than as plain text.

Lots of good text editors exist (many of them for free) and any of them will work for SILE docu-
ments so which one you use is entirely a matter of preference. You can get started with even themost
basic text editors built into your desktop environment such as Notepad onWindows, TextEdit on ma-
cOS, Gedit on Gnome, Kate on KDE, etc. However more advanced text editors (sometimes categorized
as code editors) can offer a lot of features that make the editing process more robust. Editors are typi-
cally either graphical (GUI) or terminal (TUI) oriented and range from relatively simple to extremely
complex integrated development environments (IDE). Examples of popular cross-platform GUI ori-
ented editors include VS Code, Sublime Text, and Atom6. Examples of popular terminal based editors
include VIM7, Emacs, and GNU Nano. Depending on your operating system there may be platform-

6. Still relatively popular, but was discontinued in late 2022.
7. VIM & NeoVIM users can benefit from syntax highlighting and other features via the vim-sile plugin at
https://github.com/sile-typesetter/vim-sile.

2.2 Selecting a text editor

11

specific editors to consider such as Notepad++ on Windows or TextMate on macOS. Many more niche
options abound: Lapce, Lite XL, Micro, Geany, BBEdit, UltraEdit, Eclipse, JetBrains IDE(s), Netbrains,
Bluefish, CudaText, Leafpad, etc.

For comparisons of editors see https://alternativeto.net/category/developer-tools/code-

editor/ and select your platform.

2.3 Running SILE
Once you have set up an editor, it’s time to consider a SILE input file.

2.3.1 A basic document

Let’s move to a new directory, and in a text editor, create a file hello.sil. Copy in the following
content and save the file.

\begin{document}
Hello SILE!
\end{document}

It is a the most basic document file of all, in “TeX-like” SIL syntax (more on that later).

Then, at your command line type:

$ sile hello.sil

This produces an A4-sized PDF document hello.pdf, with the textHello SILE at the top left, and
the page number (1) centered at the bottom.

Congratulations—you have just typeset your first document with SILE!

All the available command-line options are documented both in the help output (sile --help)
and in the man page (man sile). This manual will only mention a few in passing as they come up in
other other topics.

SILE generates output filenames by replacing the extension from the first input filename with the default
extension for the outputter. For most outputters this will be .pdf but, for example, the text backend will
append .txt instead. If youwant to write to a different filename altogether, use the --output file.pdf

command line option. You can use --output - to write the output directly to the system IO stream—
useful if you wish to use SILE as part of a pipeline.

2.3.2 Let’s do something cool

In https://sile-typesetter.org/examples/docbook.xml, you will find a typical DocBook 5.0 article.
Normally turning DocBook to print involves a complicated dance of XSLT processors, format object

Getting Started

12

processors, and/or strange LaTeX packages. But SILE can read XML files directly, and comes with a
docbook class, which tells SILE how to render (admittedly, a subset of) the DocBook tags onto a page.

Hence, turning docbook.xml into docbook.pdf is as simple as:

$ sile --class docbook docbook.xml

SILE v0.15.5 (LuaJIT 2.1.ROLLING) [Rust]

Loading docbook

<classes/docbook.sil><docbook.xml>[1] [2] [3]

The -c flag sets the default class, a necessary step because DocBook XML files do not comewrapped
in a tag that specifies a SILE class. The docbook class will provide the commands necessary to process
the tags typically found in DocBook files.

In Chapter 9, we’ll look at how the docbook class works, and how you can define processing ex-
pectations for other XML formats.

2.3.3 Running SILE remotely as a CI job

It may be useful for some work flows to run SILE remotely on a CI server as part of a job that renders
documents automatically from sources. This comeswith the caveatsmentioned in the section Running
via Docker above, but if you plan ahead and arrange your projects properly it can be quite useful.

There are actually many ways to run SILE remotely as part of a CI work flow. Because packages are
available formany platforms, onewaywould be to just use your platform’s native package installation
system to pull them into whatever CI-runner environment you already use. Another way is to pull in
the prebuilt Docker container and run that.

As a case study, here is how a workflow could be setup in GitHub Actions:

name: SILE
on: [push, pull_request]
jobs:
sile:

runs-on: ubuntu-latest
name: SILE
steps:
- name: Checkout

uses: actions/checkout@v3
- name: Render document with SILE

uses: sile-typesetter/sile@v0
with:
args: my-document.sil

Add the block above to your repository as .github/workflows/sile.yaml. This workflow assumes
your project has a source file named my-document.sil and will leave behind a PDF file named my-

document.pdf. Note that this Actions workflow explicitly uses a container fetched from Docker Hub
because this is the fastest way to get rolling. The comments in the section about Docker regarding
tagged versions besides latest apply equally here.

Because this repository is itself a GitHub Action you can also use the standard uses syntax like this:

2.3 Running SILE

13

uses: sile-typesetter/sile@latest

However, since GitHub rebuilds containers from scratch on every such invocation, this syntax is
not recommended for regular use. Pulling the prebuilt Docker images is recommended instead.

With these ideas in mind, other CI systems should be easy to support as well.

2.4 Installing third-party packages
Third-party SILE packages can be installed using the luarocks package manager. Packages may be
hosted anywhere, either on the default https://luarocks.org repository or (as in the example below)
listed in a specific server manifest. For example, to install markdown.sile8 (a plugin that provides a
SILE inputter that reads and processes Markdown documents) one could run:

$ luarocks install --server=https://luarocks.org/dev markdown.sile

By default, this will try to install the package to your system. This may not be desired (and usually
requires root access), but there are two other ways to install plugins. First youmake add --tree ./ to
install them in the current directory. In this case, assuming this is the same directory as your docu-
ment, SILE will automatically find such plugins. Additionally youmay install them to your user profile
by adding --localwhen installing. In this case you will also need tomodify your user environment to
check for plugins in that path since Lua does not do so by default. This can be done by running eval

$(luarocks path) before running SILE (or from your shell’s initialization script).

2.4.1 Finding Lua version in use for running SILE

Third party packages must be installed for the same version of Lua that SILE uses. On systems with
more than one Lua version installed, and where SILE does not use the default one, you may need to
specify the version manually. To determine which Lua version is used for the execution of SILE:

$ export LUA_VERSION=$(sile -e 'print(SILE.lua_version);os.exit()' 2> /dev/null)

$ luarocks install --lua-version $LUA_VERSION ...

8. https://github.com/Omikhleia/markdown.sile

Getting Started

14

Chapter 3
SILE’s Input
As mentioned earlier, a SILE document is essentially a plain text file. However, you will need some
markup to guide SILE in formatting the text. Such markup allows you to emphasize some words, start
a new paragraph, introduce a chapter, and so forth.

3.1 Concerning input formats
The default SILE distribution includes support for a proprietary input language known as SIL, which
comes in two different “flavors,” right out of the box:

• A “TeX-like” SIL syntax, loosely inspired by LaTeX but with notable deviations and different
design choices. It looks like this: \em{content}, producing content.

• An “XML flavor” which is equivalent to the TeX-like syntax but (quite obviously) presented in
XML form. The previous example, in XML format, look like this: content.

For the purpose of this documentation, we will mostly use the SIL TeX-like input format. The SIL
input syntax offers a more convenient and user-friendly alternative to XML, which can often be ver-
bose and tedious to work with by hand. On the other hand, if you are handling data written by some
other program, XML might be a much better solution.

But beforemoving forward, it is essential to note that SILE can actually accept other input markup
languages. Third-party packages can also add their own input formats. Thus, SILE is quite versatile
and not tied to the default SIL syntax, whether in its TeX-like or XML flavor.

Arbitrary XML schemas may be processed, with appropriate package support.1 The SILE distribu-
tion ships with support for (a subset of) the DocBook specification. There are also existing 3rd-party
packages providing support for other XML schemas; such as the TEI (Tex Initiative Encoding) specifi-
cations, USX (Unified Scripture XML), and others.

1. It sounds easy when put in those terms, and it is quite true. But of course, most XML-based document
formats are fairly large and complex specifications. Thus, implementing support for themmay not be as straight-
forward as it initially appears.

SILE is flexible and can be extended to support othermarkup languages, beyondXML. For instance,
there are 3rd-party collections of modules for the lightweightmarkup languagesMarkdown and Djot,
and others.

The stipulation is that an “inputter” component parses the content and produces an AST (Abstract
Syntax Tree) recognized by SILE. With the right inputter, any markup language could potentially be
supported and elevated to the status of a first-class input candidate within SILE.

With that being acknowledged, let’s get back to the SIL syntax.

3.2 The SIL flavor
The first SILE file we saw in the Getting Started chapter was in SIL TeX-like input syntax (which we
will just refer to as “SIL” from now on). Let’s take reconsider it:

Hello SILE!

A document starts with a \begin{document} command and ends with \end{document}. In between,
SILE documents are made up of two elements: text to be typeset on the page, such as “Hello SILE!” in
our example, and commands.

3.2.1 Defining the paper size

The default paper size is A4, although each class may override this value. To manually change the
paper size, an optional argument may be added to the document declaration:

\begin[papersize=letter]{document}

SILE knows about the ISO standard A, B and C series paper sizes using names like a4 and b5 as well
as many other traditional sizes. Here is a full list of papersize preset names: a0, a1, a10, a2, a3, a4,
a5, a6, a7, a8, a9, ansia, ansib, ansic, ansid, ansie, archa, archb, archc, archd, arche, arche1, arche2,
arche3, b0, b1, b10, b2, b3, b4, b5, b6, b7, b8, b9, c2, c3, c4, c5, c6, c7, c8, comm10, csheet, dl, dsheet,
esheet, executive, flsa, flse, folio, halfexecutive, halfletter, ledger, legal, letter, monarch, note, quarto,
statement, and tabloid.

If you need a paper size for your document which is not one of the standards, then you can specify
it by dimensions:

papersize=<measurement> x <measurement>.

SILE knows a number of ways of specifying a measurement. A <measurement> as mentioned above
can be specified as a floating-point number followed by a unit abbreviation. Acceptable units in-
clude printer’s points (pt), millimeters (mm), centimeters (cm), or inches (in). (You can even use feet
(ft) or meters (m) if you are typesetting particularly large documents or twips (twip, twentieths of a
point) for particularly small documents.) For instance, a standard B-format book can be specified by
papersize=198mm x 129mm.

SILE’s Input

16

Once some of the basic document properties have been set up using these fixed size units, other
dimensions may be specified relative to them, using relative units. For example, once the paper size
is set, percentage of page width (%pw) and height(%ph) become valid units. In Chapter 4 we will meet
more of these relative units, and in Chapter 7 we will meet some other ways of specifying lengths to
make them stretchable or shrinkable.

3.2.2 Setting orientation as landscape

The orientation of the page is defined as “portrait” by default, but if you want to set it as landscape
there is an option for that:

\begin[landscape=true]{document}

3.2.3 Full bleed printing

When preparing a book for press printing, youmay be asked by the professional printer to output the
document on a larger sheet than your target paper, and to reserve a trim area around it. This trick
is often called “full bleed printing”. Your document will be printed on an oversized sheet that will
then be mechanically cut down to the target size. You can specify the expected “trim” (or “bleed”)
dimension, to be distributed evenly on all sides of the document:

papersize=<paper size>, bleed=<measurement>.

For instance, a US trade bookwith an extra 0.125 inch bleed area can be specified by papersize=6in
x 9in, bleed=0.25in. The output paper size is then 6.25 per 9.25 inches, with the actual 6 per 9 inches
inner content centered.

Some packages, such as background and cropmarks, ensure their content extends over the trim
area and thus indeed “bleeds” off the sides of the page, so that artifacts such as blank lines are avoided
when the sheets are cut, would they be trimmed slightly differently for some assembling or technical
reasons.

Finally, there is also the case when the actual paper sheets available to you are larger than your
target paper size, and yet you would want the output document to show properly centered:

papersize=<paper size>, sheetsize=<actual paper size>.

For instance, papersize=6in x 9in, sheetsize=a4 produces an A4-dimensioned document, but
with you content formatted as a 6 per 9 inches US trade book. You may, obviously, combine these
options and also specify a bleed area.

3.2.4 Ordinary text

On the whole, ordinary text isn’t particularly interesting—it’s just typeset.

3.2 The SIL flavor

17

TeX users may have an expectation that SILE will do certain things with ordinary text as well. For in-
stance, if you place two straight-backquotes into a TeX document (like this: ``) then TeX will magically
turn that into a double opening quote (“). SILE won’t do this. If youwant a double opening quote, you have
to ask for one. Similarly, en- and em-dashes have to be input as actual Unicode characters for en- and
em-dashes, rather than the pseudo-ligatures such as -- or --- that TeX later transforms to the Unicode
characters.

There are only a few bits of cleverness that happen around ordinary text.

The first is that space is not particularly significant. If you write Hello SILE!with three spaces,
you get the same output as if you write Hello SILE! with just one. Space at the beginning of a line
will be ignored.

Similarly, you can place a line break anywhere you like in the input file, and it won’t affect the
output because SILE considers each paragraph at a time and computes the appropriate line breaks for
the paragraph based on the width of the line available. In other words, if your input file says

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.

…you might not necessarily get a line break after ‘tempor’; rather, you’ll get a line break wherever is
most appropriate. In the context of this document, you’ll get:

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna ali ua. Ut enim ad minim veniam, uis nostrud exercitation ullamco
laboris nisi ut ali uip ex ea commodo conse uat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident,
sunt in culpa ui o cia deserunt mollit anim id est laborum.

In other words, a line break is converted to a space.

Sometimes this conversion is not what you want. If you don’t want single line breaks to be converted to
a space, use a comment character % at the end of a line to suppress the additional whitespace.

When you want to end a paragraph, you need to input two line breaks in a row, like this:

Paragraph one.
Paragraph two.
This is not paragraph three.
This is paragraph three.

SILE’s Input

18

The second clever thing that happens around ordinary text is that a few—four, in fact—characters
have a special meaning to SILE. All of these will be familiar to TeX users.

We’ve seen that a backslash is used to start a command, and we’ll look into commands in more
detail soon. Left and right curly braces ({, }) are used for grouping, particularly in command arguments.
Finally, a percent sign is used as a comment character, meaning that everything from the percent to
the end of the line is ignored by SILE. If you want to actually typeset these characters, prepend a
backslash to them: \\ produces ‘\’, \{ produces ‘{’, \} produces ‘}’, and \% produces ‘%’.

The third clever thing is SILE will automatically hyphenate text at the end of a line if it feels this
will make the paragraph shape look better. Text is hyphenated according to the current language
options in place. By default, text is assumed to be in English unless SILE is told otherwise.

The final clever thing is that where fonts declare ligatures (where two or more letters are merged
into one in order to make them visually more attractive), SILE automatically applies the ligature. So
if you type affluent fishing, then, depending on your font, your output might look like: ‘a uent
shing’. If you specifically want to break up the ligatures, insert empty groups (using the grouping

characters { and }) in the middle of the possible ligatures: af{}f{}luent f{}ishing: ‘affluent fish-
ing’. See the section on the features package for more information on how to control the display of
ligatures and other font features.

3.2.5 Commands
Typically (and we’ll unpack that statement later), SILE commands are made up of a backslash fol-
lowed by a command name, and a document starts with a \begin{document} command and ends with
\end{document}.

A commandmay also take two other optional components: some parameters, and an argument. The
\begin command at the start of the document is an example of this.2

\begin{document}

The parameters to a command are enclosed in square brackets and take the form key=value; mul-
tiple parameters are separated by commas, as in [key1=value1,key2=value2,…]. Spaces around the
keys are not significant; we could equally write that as [key1 = value1; key2 = value2; …]. If you
need to include a comma or semicolon within the value to a parameter, you can enclose the value in
quotes: [key1 = "value1, still value 1", key2 = value2; …].

The optional argument (of which there can only be at most one) is enclosed in curly braces.3

2. Strictly speaking \begin isn’t actually a command but we’ll pretend that it is for now and get to the details
in a moment.
3. TeX users may forget this and try adding a command argument “bare,” without the braces. This won’t

3.2 The SIL flavor

19

Because the argument is optional, there is a difference between this: \command{args} (which is in-
terpreted as a command with argument args) and this: \command {args} (which is interpreted as a
command with no arguments, followed by the word args in a new group).

Here are a few more examples of SILE commands:

\eject % A command with no parameters or argument
\font[family=Times,size=10pt] % Parameters, but no argument
\chapter{Introducing SILE} % Argument but no parameters
\font[family=Times,size=10pt]{Hi there!} % Parameters and argument

3.2.6 Environments

Commands like \chapter (to start a chapter) and \em (to emphasize text) are normally used to enclose
a relatively small piece of text—a few lines at most. Where you want to enclose a larger piece of the
document, you can use an environment. An environment begins with \begin{name} and encloses all
the text up until the corresponding \end{name}. We’ve already seen an example: the document envi-
ronment, which must enclose the entire document.

Here is a secret: there is absolutely no difference between a command and an environment. As an
example, the following two forms are equivalent:

\font[family=Times,size=10pt]{Hi there!}
\begin[family=Times,size=10pt]{font}
Hi there!
\end{font}

However, in some cases the environment form of the command will be easier to read and will help
you to be clearer on where the command begins and ends.

3.2.7 SIL grammar specifications

The official grammar for the SIL syntax is the LPEG reference implementation. That being said the
reference implementation has some idiosyncrasies and is not the easiest to read. For convenience an
ABNF grammar is also provided in the source tree, see sil.abnf. This grammar does not completely
express the language as it cannot express the way SIL can embed other syntaxes, but it is a decent
approximation.

work; in SILE, the braces are always mandatory.

SILE’s Input

20

The intent behind many of the syntax choices is to make it easy to have parity with SXML flavors.
This means limiting commands to valid XML identifiers (e.g. starting with an ASCII letter, not a digit
or special character), requiring a single top level command as the document, and so forth.

3.3 The XML syntax
What we’ve seen so far has been SILE’s “TeX-like” SIL syntax flavor, but it can also directly read and
process XML files. (If it isn’t well-formed XML, then SILE will get very upset.)

Any XML tags within the input file will then be regarded as SILE commands, and tag attributes are
interpreted as command parameters. Once read and parsed, processing content from either of the
two file formats are exactly equivalent.

The XML form of the above document would be:

<document>
Hello SILE!
</document>

Commands without an argument need to be well-formed self-closing XML tags (for instance,
<break/>), and commands with parameters should have well-formed attributes. The example above,
in XML flavor, would look like this:

Hi there!

We don’t expect humans to write their documents in SILE’s XML flavor—the SIL flavor is much
better for that—but having an XML flavor allows for computers to deal with SILE a lot more easily.
One could create graphical user interfaces to edit SILE documents, or convert other XML formats to
SILE.

However, there is an even smarter way of processing XML with SILE. For this, you need to know
that you can define your own SILE commands, which can range from very simple formatting to fun-
damentally changing the way that SILE operates. If you have a file in some particular XML format—
let’s say it’s a DocBook file—and you define SILE commands for each possible DocBook tag, then the
DocBook file becomes a valid SILE input file, as-is.

In the final two chapters, we’ll provide some examples of defining SILE commands and processing
XML documents.

3.3 The XML syntax

21

Chapter 4
Some Useful SILE Commands
We’re going to organize our tour of SILE by usage: we’ll start by giving you themost useful commands
that you’ll need to get started typesetting documents using SILE, and then we’ll gradually move into
more and more obscure corners as the documentation progresses.

4.1 Fonts
The most basic command for altering the look of the text is the \font command. It takes two forms:

• \font[parameters…]{argument}

• \font[parameters…]

The first form sets the given argument text in the specified font; the second form changes the font
used to typeset text from this point on.

For instance:

Small text
\font[size=15pt]%
Big text!
\font[size=30pt]{Bigger text}
Still big text!

produces:
Small text

Big text!

Bi er text
Still big text!
As you can see, one possible attribute is size, which can be specified as a SILE <dimension>. A

<dimension> is like a <basic length> (described above) but with a few extra possible dimensions.
There are dimensions which are relative to the size of the current font: an em is the size of the font’s
current em square (for a 12pt font, this would be 12 points); an en is half the em square; an ex is the
height of the character ‘x’; a spc is the width of the space character.

There are also dimensions which are defined as a percentage of the size of the current page width
or height, the current frame width or height, and the line width (%pw, %ph, %fw, %fh, and %lw, respec-
tively). You can specify lengths in terms of the current paragraph skip (ps) and baseline skip (bs),
which will make sense later on. Additional units are available relative to the largest or smallest value
of either axis (%pmax, %pmin, %fmax, %fmin).

The full list of attributes to the \font command are:

• size: As above.
• family: The name of the font to be selected. SILE should know about all the fonts installed on

your system, so that fonts can be specified by their name.
• filename: If a filename is supplied, SILE will use the font file provided rather than looking at

your system’s font library.
• style: Can be normal or italic.
• weight: A CSS-style numeric weight ranging from 100, through 200, 300, 400, 500, 600, 700,
800 to 900. Not all fonts will support all weights (many just have two), but SILE will choose the
closest.

• features: Enable or disable OpenType feature flags (-hlig, +ss01)
• variant: A font variant (normal, smallcaps)
• variations: Set OpenType variations axis values used in variable fonts (e.g.
variations="wdth=122").1

• language: The two letter (ISO639-1) language code for the text. This will affect both font shap-
ing and hyphenation.

• direction: The expected text direction. (LTR-TTB for left to right, top to bottom; RTL-BTTwould
set text right to left, bottom to top!)

• script: The script family in use. (See Chapter 7, “Language,” for more on these past three
settings.)

It’s quite fiddly to be always changing font specifications manually; later we’ll see some ways to
automate the process. SILE’s plain class notably provides the \strong{…} command as a a shortcut for
\font[weight=700]{…}, and the \em{…} to emphasize text (switching between italic or regular style
as needed).

Note for parameters that accept multiple values, values may be separated with commas.
Be sure to wrap the value in quotes so the commas don’t get parsed as new parameters.
For example \font[features="+calt,+ss01"] will enable OpenType feature flags for both
contextual alternatives and alternative style set 1. Similarly values that are themselves key=value
pairs the quotation marks will keep them separate from other parameters. For example
\font[variations="wght=150,wdth=122"] can be used to set both the weight and width axis values.

1. Support for variations requires at least HarfBuzz 6. If SILE is built on a system without support, an error
will be thrown when trying to render documents using variations.

Some Useful SILE Commands

24

4.2 Document structure
SILE provides a number of different classes of document (similar to LaTeX classes). By default, you get
the plain class, which has very little support for structured documents. There is also the book class,
which adds support for right and left page masters, running headers, footnotes, and chapter, section
and subsection headings.

To use the commands in this section, you will need to request the book class by specifying, in
your \begin{document} command, the class=book parameter; for example, the document you are
currently reading begins with the command \begin[class=book]{document}.

4.2.1 Chapters and sections

If you choose the book class, you can divide your document into different sections using the com-
mands \chapter{…}, \section{…}, and \subsection{…}. The argument to each command is the name
of the chapter or section, respectively. Chapters will be opened on a new right-hand page, and the
chapter namewill form the left running header. Additionally, the section name and number will form
the right running header.

Chapters, sections and subsections will be automatically numbered starting from 1. To alter the num-
bering, see the documentation for the counters package in the next chapter. To produce an unnumbered
chapter, provide the parameter numbering=false.

This subsection begins with the command \subsection{Chapters and Sections}.

4.2.2 Footnotes

Footnotes can be added to a book with the \footnote{…} command.2 The argument to the command
will be set as a footnote at the bottom of the page. Footnotes are automatically numbered from 1 at
the start of each chapter.

4.3 Paragraph indentation
Paragraphs in SILE normally begin with an indentation (by default, 20 points in width). To turn this
off, you can use the \noindent command at the start of a paragraph. (This current paragraph doesn’t
need to call \noindent because \section and \chapter automatically call it for the text following the
heading.) A \noindent can be cancelled by following it with an \indent. You can completely turn off
indentation for the whole of the document by changing its size to zero. We’ll see how to change the

2. Like this: \footnote{Like this.}

4.3 Paragraph indentation

25

size of the indentation in the settings chapter, but the easiest way to set it to zero for the whole of
the document (rather than for just one paragraph) is to issue the command \neverindent.

4.4 Horizontal spacing
There are also commands to increase the horizontal space in a line; from the smallest to the largest,
\thinspace (1/6th of an em), \enspace (1 en), \quad (1 em), and \qquad (2em).

If you want to add a very long stretchy space, you can use the command \hfill. Doing this in
conjunction with a line break will cause the line before the break to be flush left, like this.
The command \cr is a shortcut for \hfill\break.

4.5 Vertical spacing
To increase the vertical space between paragraphs or other elements, the commands \smallskip,
\medskip and \bigskip are available to add a 3pt, 6pt, and 12pt gap, respectively. There will be a
\bigskip after this paragraph.

Besides this predefined skips, you can also use \skip[height=⟨dimension⟩] to add a vertical space
of a given height.

If you want to add a very long stretchy vertical space, you can use the command \vfill.
When playing with vertical spaces, there is however a few additional considerations to take into

account.Without entering into the details, they are usually ignored at the beginning of a frame.Would
you want to enforce them there, you therefore need to have some initial content. An empty \hbox

can do the trick. Additionally, there are cases where SILE automatically inserts a \vfill command at
the end of a frame, so you may need to ensure you terminated a paragraph and introduced your own
frame break in order to avoid it. The following example illustrates both techniques.

\hbox{}% This is an empty initial line
\skip[height=2cm]
A paragraph around 2 centimeters below the top of the frame.
\vfill
A paragraph pushed at the bottom of the frame.\par
\break

4.6 Text alignment
SILE normally fully-justifies text—that is, it tries to alter the spacing between words so that the text
stretches across the full width of the column.3 An alternative to full justification is ragged right

3. This does not mean that text will always exactly fill the width of the column. SILE will choose line breaks
and alter the spacing between words up to a certain extent, but when it has done its best, it will typeset the least
bad solution; this may involve some of the words jutting slightly out into the margin.

Some Useful SILE Commands

26

margin formatting, where the spacing between words is constant but the right hand side of the
paragraph may not line up. Ragged right is often used for children’s books and for frames with
narrow columns such as newspapers. To use ragged right formatting, enclose your text in a
raggedright environment. This paragraph is set ragged right.

Similarly, there is a raggedleft environment, in which the right-hand margin of the paragraph
is fixed, but the left-hand margin is allowed to vary. This paragraph is set ragged left.

You can center a paragraph of text by wrapping it in the center environment. This paragraph is
centered on the page.

4.7 Line and page breaks
SILE automatically determines line and page breaks. In later chapters we will introduce some settings
which can be used to tweak this process. However, SILE’s plain class also provides some commands
to help the process on its way.

The following four commands can be used to control line breaks (when used within a paragraph),
as well as page breaks (when used between paragraphs):4

• \break

• \goodbreak

• \nobreak

• \allowbreak

Within a paragraph, the \break command requests a line break at the given location.5A less forceful
variant is \goodbreak, which suggests to SILE that this is a good point to break a line. The opposite
is \nobreak, which requests that, if at all possible, SILE not break a line at the given point. A neutral
variant is \allowbreak, which allows SILE to break at a point that it would otherwise not consider as
suitable for line breaking.

Between paragraphs, these commands have a different meaning. The \break command requests
a frame break at the given location. Where there are multiple frames on a page—for instance, in a
document with multiple columns—the current frame will be ended and typesetting will recommence

4. The names are similar to those used in (La)TeX, but their semantics differ slightly.
5. Note that \break just causes a line break, but might not be what you intended, for instance in a justified
paragraph. As previously noted, the \cr command might do what you actually expected there.

4.7 Line and page breaks

27

at the top of the next frame. Mutatis mutandis, \goodbreak, \nobreak and \allowbreak affect frame
breaking in a similar way.

The following commands are intended to be used between paragraphs and apply to page breaks
only:

• \novbreak inhibits a frame break, and is just a convenience over \nobreak (ending a paragraph
if need be, to be sure you are indeed inhibiting a frame break).

• \framebreak and \eject request a frame break.
• \pagebreak and \supereject request a non-negotiable page break, and are more forceful vari-

ants of the previous commands, ensuring that a new page is opened even if there are remaining
frames on the page.

With \framebreak and \pagebreak, all vertical stretchable elements6 are expanded to fill up the
remaining space as much as possible. The \eject and \supereject variants insert an infinite vertical
stretch, so that all vertical stretchable elements on the page stay at their natural size.

4.8 Including other files and code
To make it easier for you to author a large document, you can break your SILE document up into
multiple files. For instance, you may wish to put each chapter into a separate file, or you may wish to
develop a file of user-defined commands (see Chapter 6) and keep this separate from the main body
of the document. You will then need the ability to include one SILE file from another.

This ability is provided by the \include command. It takes onemandatory parameter, src=⟨path⟩,
which represents the path to the file. So for instance, you may wish to write a thesis like this:

\begin[class=thesis]{document}
\include[src=macros.xml]
\include[src=chap1.sil]
\include[src=chap2.sil]
\include[src=chap3.sil]…
\include[src=endmatter.sil]
\end{document}

\includes may be nested: file A can include file B which includes file C.
The contents of an included file should be put in a sile environment (or a <sile> tag if the file is

in XML flavor), like so:

6. Vertical: Here, in this document in latin script. The more advanced topic of writing directions and foreign
scripts is tackled later in this manual.

Some Useful SILE Commands

28

\begin{sile}
\chapter{A Scandal In Bohemia}
To Sherlock Holmes she is always \em{the woman}.
\end{sile}

This is because every file is required to contain a valid XML tree, which wouldn’t be the case with-
out a common root.

SILE is written in the Lua programming language, and the Lua interpreter is available at runtime.
Just as one can run Javascript code from within a HTML document using a <script> tag, one can run
Lua code from within a SILE document using a \lua command. (A \script command exists, but is
being deprecated beginning in SILE v0.15.0.)

This command has three modes:
• A Lua library may be loaded using the Lua package path, as in \lua[require=module.spec].
• A Lua script may run by giving a filesystem path, as in \lua[src=path/to/file.lua].
• Lua code can be provided as inline content, as in \lua{SILE.typesetter:typeset("foo")}.

Another former use case or \script[src=…] was to load SILE packages. This use case has been dep-
recated in favor of the more robust loader \use[module=…]. Be sure to use a module spec with period
delimiters not a path with slashes (e.g. packages.math not packages/math). This will ensure cross-
platform compatibility as well as make sure packages don’t get loaded multiple times.

Doing anything interesting inline requires knowledge of the internals of SILE, (thankfully the code
is not that hard to read) but to get you started, the Lua function SILE.typesetter:typeset(…) will
add text to a page, SILE.call("…") will call a SILE command, and SILE.typesetter:leaveHmode()

ends the current paragraph and outputs the text. For example:

\begin{lua}
for i=1,10 do

SILE.typesetter:typeset(i .. " x " .. i .. " = " .. i*i .. ". ")
SILE.typesetter:leaveHmode()
SILE.call("smallskip")

end
\end{lua}

produces the following output:
1 x 1 = 1.
2 x 2 = 4.
3 x 3 = 9.
4 x 4 = 16.
5 x 5 = 25.
6 x 6 = 36.

4.8 Including other files and code

29

7 x 7 = 49.
8 x 8 = 64.
9 x 9 = 81.
10 x 10 = 100.

There is one notable caveat when embedding Lua code documents written with the TeX-flavor
markup. Since SILE has to first parse the TeX markup to find the start and end of such lua commands
without understandingwhat’s in between, it is strictly necessary that no end tags appear inside the Lua
code. This means that for the environment block version (\begin{lua}) there must be no instances
of \end{lua} inside the Lua code block, even inside a string that would otherwise be valid Lua code
(e.g., if it was inside a quoted string or Lua comment). The first instance of such an end tag terminates
the block, and there is currently no way to escape it. For the inline command form (\lua) an exact
matching number of open and closing braces may appear in the Lua code—the next closing brace at
the same level as the opening brace will close the tag, even if it happens to be inside some quoted
string in the Lua code. Including any number of nested opening and closing braces is possible as long
as they are balanced.

4.9 Including raw inline content
When parsing a SIL file, SILE invokes an “inputter”module, which implements the SIL language gram-
mar and constructs an abstract syntax tree (AST) for processing. This implies that the content of any
command or environment is in SIL syntax.

However, there are cases when you may need to pass raw content that should remain unparsed —
or, more properly, later parsed by a different grammar. While you could escape all special characters
in your content with backslashes to prevent them from being interpreted as SIL constructs, this ap-
proach is tedious and cumbersome.

This issue already arises in several scenarios. For instance, the \lua command (and the legacy
\script command) described above fall into this category. In these cases, one expects to use Lua code
without the need for escaping it.

Similarly, the content of the \math command (for the math package) falls outside the scope of
the SIL language syntax and requires a different grammar. After all, its content follows the TeX math
syntax, with commands with multiple arguments, special use of brackets, and so on. Therefore, we
need to instruct the SIL parser that this content should not be interpreted,but rather extracted as a
raw string. Later, it will be fed to another dedicated inputter for parsing.7

7. In the case of math, it is currently a pseudo-inputter, but that is an implementation detail.

Some Useful SILE Commands

30

The SIL inputter reserves a few special keywords: \lua, \script; but also \ftl, \math, \sil, \use,
\xml; and finally \raw, which we will discuss here.

It is obvious that we can’t reserve too many keywords in advance. However, they must be known
before parsing a file, which means they can’t be dynamic. The reserved keywords can’t be overridden
or redefined after document parsing has begun. So, how can we achieve extensibility?

SILE provides a mechanism to address this: raw handlers. Through the Lua interface, packages and
classes can register a function that gets called when a raw command is encountered in the input
stream. From within a SIL file, the \raw[type=…] command can then be used to invoke that handler,
passing the raw content.8

Rawhandlers are identified by the type parameter. By default, SILE comeswith a text rawhandler,
which simply typesets its content“verbatim” (as a string)without interpreting it. Packages and classes
can register their own additional raw handlers to fulfill specific needs.

8. In a certain sense, all things equal, raw handlers are similar to the concept of “CDATA sections” in XML.

4.9 Including raw inline content

31

Chapter 5
SILE Packages
SILE comes with a number of standard packages which provide additional functionality. In fact, the
actual “core” of SILE’s functionality is small and extensible, withmost of the interesting features being
provided by add-on packages. SILE ships with the core libraries plus a small collection of packages
covering some commonneeds;more can be added from3rd party sources. SILE packages arewritten in
the Lua programming language, and can define new commands, change the way that the SILE system
operates, or indeed do anything that is possible to do in Lua.

5.1 Loading a package
Loading a package is done through the \use command. By convention packages live in a packages/

For instance, we’ll soon be talking about the grid package, which normally can be found as sile/
packages/grid/init.lua in wherever your system installed the SILE resource files. To load this, we’d
say:

\use[module=packages.grid]

By default SILE will look for packages in a variety of directories:

1. The directory where your input source file is located.
2. The current working directory.
3. The environment variable SILE_PATH, if defined.
4. The default Lua search path.
5. Various directories depending on where and how SILE is installed on your system.

SILE does not descend into subdirectories when looking for a file. If you have arranged your personal
class or package files into subdirectories, you will need to provide a full relative path to them.

5.2 The SILE ecosystem
The SILE installation includes a core collection of modules we hope are generally useful. But there’s
more out there! As mentioned earlier in this manual, a number of third-party contributed collections
of modules can be installed via the LuaRocks package manager.

A non-authoritative list of third-party modules may be consulted at https://luarocks.org/m/sile.
To publish your own modules to LuaRocks, see the package-template.sile repository.

A SILE compatible LuaRock simply installs the relevant class, package, language, internationaliza-
tion resources, or similar files in a siledirectory. This directory could be in your systemLuadirectory,
in your user directory, or any other location you specify.

By default, LuaRocks will install these modules to the Lua search path.

$ luarocks install markdown.sile
$ sile ...

Depending on your system, this probably requires root permissions. If you either don’t have root
permissions or don’t want to pollute your system’s root file system, you can also install as a user. To
use packages installed as a user you will need to have LuaRocks add its user tree to your Lua search
path before running SILE.

$ luarocks --local install markdown.sile
$ eval $(luarocks --local path)
$ sile ...

Of course, you can add that eval statement to your shell profile to always include your user direc-
tory in your Lua path. You can also add your own entries to the top of the search path list by setting
the SILE_PATH variable. For example:

$ export SILE_PATH="/path/to/my/library/"
$ sile ...

Note that modules are not limited to just packages. They can include classes, languages, interna-
tionalization resources, or anything else provided by SILE.1

5.3 Graphics
As well as processing text, SILE can also include images.

5.3.1 image

● Good maturity
Loading the image package gives you the \img command, fashioned after the HTML equivalent. It
takes the following parameters: src=⟨file⟩ must be the path to an image file; you may also give
height and/or width parameters to specify the output size of the image on the paper. If the size

1. Also because external locations are searched before SILE itself, they can even override any core part of
SILE itself. As such you should probably make sure you review what a package does before installing it!

SILE Packages

34

parameters are not given, then the image will be output at its “natural” size, honoring its resolution if
available. The command also supports a page=⟨number⟩ option, to specify the selected page in formats
supporting several pages (such as PDF).

With the libtexpdf backend (the default), the images can be in JPEG, PNG, EPS, or PDF formats.

Here is a 200x243 pixel image output with \img[src=documentation/gutenberg.png]. The image
has a claimed resolution of 100 pixels per inch, so ends up being two inches (144pt) wide on the page:

Here it is with (respectively) \img[src=documentation/gutenberg.png, width=120pt],
\img[src=documentation/gutenberg.png, height=200pt], and \img[src=documentation/

gutenberg.png, height=200pt, width=120pt]:

Notice that images are typeset on the baseline of a line of text, rather like a very big letter.

5.3 Graphics

35

5.3.2 svg

◍ Usable with limitations
This package provides two commands.

The first is \svg[src=⟨file⟩]. This loads and parses an SVG file and attempts to render it in the
current document. Optional width or height options will scale the SVG canvas to the given size cal-
culated at a given density option (which defaults to 72 ppi). For example, the command \svg[src=

packages/svg/smiley.svg, height=12pt] produces the following:

The second is a more experimental \svg-glyph. When the current font is set to an SVG font, SILE
does not currently render the SVG glyphs automatically. This command is intended to be used as a
means of eventually implementing SVG fonts; it retrieves the SVG glyph provided and renders it.

In both cases the rendering is donewith our own SVG drawing library; it is currently veryminimal,
only handling lines, curves, strokes and fills. For a fuller implementation, consider using a converters
registration to render your SVG file to PDF and include it on the fly.

5.3.3 converters

◍ Usable with limitations
The converters package allows you to register additional handlers to process included files and im-
ages. That sounds a bit abstract, so it’s best explained by example. Suppose you have a GIF image that
you would like to include in your document. You read the documentation for the image package and
you discover that sadly GIF images are not supported. The converters package allows you to teach
SILE how to get the GIF format into something that is supported. We can use the ImageMagick toolkit
to turn a GIF into a JPEG, and JPEGs are supported directly by SILE.

We do this by registering a converter with the \converters:register command:

\use[module=packages.converters]
\converters:register[from=.gif,to=.jpg,command=convert $SOURCE $TARGET]

And now it just magically works:

\img[src=hello.gif, width=50pt]

This will execute the command convert hello.gif hello.jpg and include the converted
hello.jpg file.

This trick also works for text files:

\converters:register[from=.md, to=.sil, command=pandoc -o $TARGET $SOURCE]
\include[src=document.md]

SILE Packages

36

5.4 Text & Characters
This section covers a range of different topics from initial capitals to text transforms, through URL
formatting.

5.4.1 dropcaps

● Good maturity
The dropcaps package allows you to format paragraphs with an “initial capital” (also commonly re-
ferred as a “drop cap”), typically one large capital letter used as a decorative element at the beginning
of a paragraph.

It provides the \dropcap command. The content passed will be the initial character(s). The pri-
mary option is lines, an integer specifying the number of lines to span (defaults to 3). The scale of the
characters can be adjusted relative to the first line using the scale option (defaults to 1.0). The join
parameter is a boolean for whether to join the dropcap to the first line (defaults to false). If join is
true, the value of the standoff option (defaults to 1spc) is applied to all but the first line. Optionally
color can be passed to change the typeface color, which is sometimes useful to offset the apparent
weight of a large glyph. To tweak the position of the dropcap, measurements may be passed to the
raise and shift options. Other options passed to \dropcap will be passed through to \font when
drawing the initial letter(s). This may be useful for passing OpenType options or other font prefer-
ences.

Some fonts have capitals — such as, typically, Q and J — hanging below the baseline. By default,
the dropcap fits the specified number of lines and the characters are typeset in a smaller size to fit
these descenders.

With the strict=false option, the characters are scaled with respect to their height only, and
extra hanged lines are added to the dropcap in order to accommodate the descenders. The dropcap
is allowed to overflow the baseline by a reasonable amount, before triggering the addition of extra
lines, for fonts that have capitals very slightly hanging below the baseline. This tolerance is computed
based on the font metrics. If you want to bypass this mechanism and adjust the tolerance, you can use
the dropcaps.bsratio setting.

Moreover, some fonts, such as EB Garamond Initials, have all capitals hanging below the baseline.
To take this case into account in non-strict mode, the depth adjustment of the dropcap is empirically
corrected based on that of a character which shouldn't have any, by default an I. The character(s)
used for this depth adjustment correction can be specified using the depthadjust option.

One caveat is that the size of the initials is calculated using the default linespacing mechanism. If you
are using an alternative method from the linespacing package, you might see strange results. Set the
document.baselineskip to approximate your effective leading value for best results. If that doesn't

5.4 Text & Characters

37

work set the size manually. Using SILE.setCommandDefaults() can be helpful for so you don't have to
set the size every time.

5.4.2 lorem

● Good maturity
Sometimes you just need some dummy text. The command \lorem produces fifty words of “lorem
ipsum”; you can choose a different number of words with the words=⟨number⟩ parameter. Here’s
\lorem[words=20]:

lorem ipsum dolor sit amet consetetur sadipscing elitr sed diam nonumy eirmod tempor invi-
dunt ut labore et dolore magna ali uyam

5.4.3 textcase

● Good maturity
The textcase package provides commands for language-aware case conversion of input text. For ex-
ample, when language is set to English, then \uppercase{hij} will return HI . However, when lan-
guage is set to Turkish, it will returnHİ .

As well as \uppercase, the package provides the commands \lowercase and \titlecase.

5.4.4 unichar

● Good maturity
SILE is Unicode compatible, and expects its input files to be in the UTF-8 encoding. (The actual range
of Unicode characters supported will depend on the supported ranges of the fonts that SILE is using
to typeset.) Some Unicode characters are hard to locate on a standard keyboard, and so are difficult
to enter into SILE documents.

The unichar package helps with this problem by providing the \unichar command to enter Uni-
code codepoints.

\unichar{U+263A}

This produces:☺

If the argument to \unichar begins with U+, u+, 0x, or 0X, then it is assumed to be a hexadecimal
value. Otherwise it is assumed to be a decimal codepoint.

5.4.5 url

● Good maturity
This package enhances the typesetting of URLs in two ways. First, it provides the \href[src=⟨url⟩]

{⟨content⟩} command which inserts PDF hyperlinks, like this.

SILE Packages

38

http://www.sile-typesetter.org/

The \href command accepts the same borderwidth, bordercolor, borderstyle, and borderoffset

styling options as the \pdf:link command from the pdf package, for instance like this.

Nowadays, it is a common practice to have URLs in print articles (whether it is a good practice or
not is yet another topic). Therefore, the package also provides the \url command, which will auto-
matically insert breakpoints into unwieldy URLs like https://github.com/sile-typesetter/sile-

typesetter.github.io/tree/master/examples so that they can be broken up over multiple lines.

It allows line breaks after the colon, and before or after appropriate segments of an URL (path
elements, query parts, fragments, etc.). By default, the \url command ignores the current language,
as one would not want hyphenation to occur in URL segments. If you have no other choice, however,
you can pass it a language option to enforce a language to be applied. Note that if French (fr) is
selected, the special typographic rules applying to punctuations in this language are disabled.

To typeset a URL and also make it an active hyperlink, use the \href command without the src

option, but with the URL passed as argument.

The breaks are controlled by two penalty settings: url.linebreak.primaryPenalty

for preferred breakpoints and, for less acceptable but still tolerable breakpoints,
url.linebreak.secondaryPenalty—its value should logically be higher than the previous one.

The \urlstyle command hookmay be overridden to change the style of URLs. By default, they are
typeset as “code”.

5.4.6 gutenberg

○ Experimental
Johann Gutenberg’s 42-line Bible is considered amasterpiece of early printing in part due to the qual-
ity of justification of every line. To achieve perfect justification color, Gutenberg used a number of
ligatures, abbreviations, substitutions, and so on.

As an experiment in extending SILE’s justification engine, the gutenberg package allows SILE to
choose between a number of different options for a particular piece of text, depending on what would
improve the line fitting.

For instance, issuing the command \alternative{{and}{&}} would insert either the text and or
an ampersand, depending on what best fits the current line.

5.5 Colors
Color perception is a complicated topic, depending on many factors. SILE currently provides a few
packages for handling coloring, in a simple acceptation of the term.

5.5.1 color

5.5 Colors

39

http://www.sile-typesetter.org/

◍ Usable with limitations
The color package allows you to temporarily change the color of the (virtual) ink that SILE uses to
output text and rules. The package provides a \color command which takes one parameter, color=
⟨color specification⟩, and typesets its argument in that color.

The color specification is one of the following:
• A RGB color in #xxx or #xxxxxx format, where x represents a hexadecimal digit, as often seen

in HTML/CSS (#000 is black, #fff is white, #f00 is red, and so on);
• A RGB color as a series of three numeric values between 0 and 255 (e.g. 0 0 139 is a dark blue)

or as three percentages;
• A CMYK color as a series of four numeric values between 0 and 255 or as four percentages;
• A grayscale color as a numeric value between 0 and 255;
• A (case-insensitive) named color, as one of the 148 keywords defined in the CSS Color Module

Level 4. (Named colors resolve to RGB in the actual output.)

So, for example, this text is typeset with \color[color=red]{…}.

Here is a rule typeset with \color[color=#22dd33]:

5.5.2 background

◍ Usable with limitations
As its name implies, the background package allows you to set the color of the page canvas back-
ground or to use a background image extending to the full page width and height.

The package provides a \background command which requires one of the following parameters:
• color=⟨color specification⟩ sets the background of the current and all following pages to

that color. The color specification has the same syntax as specified in the color package.
• src=⟨file⟩ sets the background of the current and all following pages to the specified image.

The latter will be scaled to the target dimension.

The background extends to the page trim area (“page bleed”) if the latter is defined. This is to
ensure that it indeed “bleeds” off the sides of the page, so as to avoid thinwhite lignes on an otherwise
full color page when the paper sheet is cut to dimension but some pages are trimmed slightly more
than others. If setting only the current page background different from the default is desired, an extra
parameter allpages=false can be passed.

So, for example, \background[allpages=false, color=#e9d8ba]will set a sepia tone background
on the current page. The disable=true parameter allows disabling the background on the following
pages. It may be useful when allpages is active from a previous invocation.

5.6 Fillers & Rules
Line-filling patterns or rules, rectangular blobs of inks... What else to say?

SILE Packages

40

5.6.1 leaders

● Good maturity
The leaders package allows you to create repeating patterns which fill a given space. It provides the
\dotfill command, which does this:

A\dotfill{}B

A . B

It also provides the \leaders[width=⟨dimension⟩]{⟨content⟩} command which allow you to de-
fine your own leaders. For example:

A\leaders[width=40pt]{/\\}B

A /\/\/\/\ B

If the width is omitted, the leaders extend as much as possible (as a \dotfill or \hfill).

Leader patterns are always vertically aligned, respectively to the end edge of the frame they appear
in, for a given font. It implies that the number of repeated patterns and their positions do not only
depend on the available space, but also on the alignment constraint and the active font.

5.6.2 rules

● Good maturity
The rules package provides several line-drawing commands.

The \hrule command draws a blob of ink of a given width (length), height (above the current
baseline), and depth (below the current baseline). Such rules are horizontal boxes, placed along the
baseline of a line of text and treated just like other text to be output. So, they can appear in themiddle
of a paragraph, like this: (That one was generated with \hrule[height=0.5pt, width=20pt].)

The \underline command underlines its content.

The \strikethrough command strikes its content.

Both commands support paragraph content spanning multiple lines.

The position and thickness of the underlines and strikethroughs are based on the metrics of the current
font, honoring the values defined by the type designer.

The \hrulefill inserts an infinite horizontal rubber, similar to an \hfill, but—as its name implies
—filledwith a rule (that is, a solid line). By default, it stands on the baseline andhas a thickness of 0.2pt,
below the baseline. It supports optional parameters raise=⟨dimension⟩ and thickness=⟨dimension⟩

to adjust the position and thickness of the line, respectively. The former accepts a negative mea-
surement, to lower the line. Alternatively, use the position option, which can be set to underline or

5.6 Fillers & Rules

41

strikethrough. In that case, it honors the current font metrics and the line is drawn at the appropri-
ate position and, by default, with the relevant thickness. You can still set a custom thickness with the
thickness parameter.

For instance, \hrulefill[position=underline] gives:

Finally, \fullrule draws a thin standalone rule across the width of a full text line. Accepted pa-
rameters are raise and thickness, with the same meanings as above.

5.7 Boxes & Effects
You can manipulate boxed elements to achieve a variety of effects.

5.7.1 raiselower

● Good maturity
If you don’twant your images, rules, or text to be placed along the baseline, you canuse the raiselower
package to move them up and down.

It provides two simple commands, \raise and \lower, which both take a height=⟨dimension⟩

parameter. They will respectively raise or lower their argument by the given height. The raised or
lowered content will not alter the height or depth of the line.

Here is some text raised by three points; here is some text lowered by four points.

The previous paragraph was generated by:

Here is some text raised by \raise[height=3pt]{three points}; here is some text lowered by
\lower[height=4pt]{four points}.

5.7.2 rebox

● Good maturity
This package provides the \rebox command, which allows you to lie to SILE about the size of content.
You can change the width, height, or depth of your content with the respective parameters, or make
it invisible by setting the phantom parameter to true.

For example:

Hello \rebox[width=0pt]{world}overprint.
Look I’m not \rebox[phantom=true]{here}!

Hello worldoverprint.

Look I’m not !

SILE Packages

42

5.7.3 rotate

◍ Usable with limitations
The rotate package allows you to rotate things. You can rotate entire frames, by adding the rotate=
⟨angle⟩ declaration to your frame declaration, and you can rotate any content by issuing the com-
mand \rotate[angle=⟨angle⟩]{⟨content⟩}, where the angle is measured in degrees.

Content which is rotated is placed in a box and rotated. The height and width of the rotated box
is measured, and then put into the normal horizontal list for typesetting. The effect is that space is
reserved around the rotated content. The best way to understand this is by example: here is some text

rotated by ten, twenty , and forty degrees.

The previous line was produced by the following code:

here is some text rotated by
\rotate[angle=10]{ten}, \rotate[angle=20]{twenty}, and \rotate[angle=40]{forty} degrees.

5.7.4 scalebox

● Good maturity
The scalebox package allows to scale any content by some horizontal and vertical ratios, by issuing
the command \scalebox[xratio=⟨number⟩, yratio=⟨number⟩]{⟨content⟩}, where the ratios are
optional non-null numbers (defaulting to 1). The content is placed in a box and scaled.

Here is an example.
The previous line was produced by the following code:

Here is an \scalebox[xratio=0.75, yratio=1.25]{example}.

5.8 Mathematical formulas
◍ Usable with limitations
Themath package provides typesetting of formulas directly in a SILE document.

Mathematical typesetting in SILE is still in its infancy. As such, it lacks some features and may contain
bugs. Feedback and contributions are always welcome.

To typeset mathematics, you will need an OpenType math font installed on your system.By default,
this package uses Libertinus Math, so it will fail if Libertinus Math can’t be found. Another font may
be specified via the setting math.font.family. If required, you can set the font style and weight via
math.font.style and math.font.weight. The font size can be set via math.font.size.

5.8 Mathematical formulas

43

MathML.
The first way to typeset math formulas is to enter them in the MathML format. MathML is a stan-

dard for encoding mathematical notation for the Web and for other types of digital documents. It is
supported by a wide range of tools and represents the most promising format for unifying the encod-
ing of mathematical notation, as well as improving its accessibility (e.g., to blind users).

To render an equation encoded in MathML, simply put it in a mathml command. For example, the
formula 𝑎2 + 𝑏2 = 𝑐2 was typeset by the following command:

\mathml{
\mrow{

\msup{\mi{a}\mn{2}}
\mo{+}
\msup{\mi{b}\mn{2}}
\mo{=}
\msup{\mi{c}\mn{2}}

}
}

In an XML document, we could use the more classical XML syntax:

<mathml>
<mrow>

<msup> <mi>a</mi> <mn>2</mn> </msup>
<mo>+</mo>
<msup> <mi>b</mi> <mn>2</mn> </msup>
<mo>=</mo>
<msup> <mi>c</mi> <mn>2</mn> </msup>

</mrow>
</mathml>

By default, formulas are integrated into the flow of text. To typeset them on their own line, use the
mode=display option:

𝑎2 + 𝑏2 = 𝑐2

TeX-like syntax.
As the previous examples illustrate, MathML is not really intended to be written by humans and

quickly becomes very verbose. That is why this package also provides a math command, which under-
stands a syntax similar to themath syntax of TeX. To typeset the above equation, one only has to type
\math{a^2 + b^2 = c^2}.

Here is a slightly more involved equation:

\begin[mode=display]{math}
\sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}

\end{math}

This renders as:

SILE Packages

44

∞

𝑛=1
1
𝑛2 =

π2
6

The general philosophy of the TeX-like syntax is to be a simple layer on top of MathML, and
not to mimic perfectly the syntax of the LaTeX tool. Its main difference from the SILE syntax is
that \mycommand{arg1}{arg2}{arg3} is translated into MathML as <mycommand> arg1 arg2 arg3

</mycommand> whereas in normal SILE syntax, the XML equivalent would be <mycommand>arg1</

mycommand> arg2 arg3.

\sum, \infty, and \pi are only shorthands for the Unicode characters ∑, ∞ and π. If it’s more
convenient, you can use these Unicode characters directly. The symbol shorthands are the same as in
the TeX package unicode-math.

{formula} is a shorthand for \mrow{formula}. Since parentheses—among other glyphs—stretch
vertically to the size of their englobing mrow, this is useful to typeset parentheses of different sizes on
the same line:

\Gamma (\frac{\zeta}{2}) + x^2(x+1)

renders as

Γ ζ
2 + 𝑥2 𝑥 + 1

which is ugly. To keep parentheses around 𝑥 + 1 small, you should put braces around the expression:

\Gamma (\frac{\zeta}{2}) + x^2{(x+1)}

Γ ζ
2 + 𝑥2(𝑥 + 1)

To print a brace in a formula, you need to escape it with a backslash.

Token kinds.
In the math syntax, every individual letter is an identifier (MathML tag mi), every number is a…

number (tag mn) and all other characters are operators (tag mo). If this does not suit you, you can
explicitly use the \mi, \mn, or \mo tags. For instance, sin(x) will be rendered as 𝑠𝑖𝑛(𝑥), because SILE
considers the letters s, i and n to be individual identifiers, and identifiers made of one character are
italicized by default. To avoid that, you can specify that sin is an identifier by writing \mi{sin}(x)

and get: sin(𝑥). If you prefer it in “double struck” style, this is permitted by the mathvariant attribute:
\mi[mathvariant=double-struck]{sin}(x) renders as 𝕤𝕚𝕟(𝑥).

Atom types and spacing.
Each token automatically gets assigned an atom type from the list below:
• ord: mi and mn tokens, as well as unclassified operators

5.8 Mathematical formulas

45

https://www.ctan.org/pkg/unicode-math

• big: big operators like ‘∑’ or ‘∏’
• bin: binary operators like ‘+’ or ‘%’
• rel: relation operators like ‘=’ or ‘<’
• open: opening operators like ‘(’ or ‘[’
• close: closing operators like ‘)’ or ‘]’
• punct: punctuation operators like ‘,’

The spacing between any two successive tokens is set automatically based on their atom types, and
hence may not reflect the actual spacing used in the input. To make an operator behave like it has a
certain atom type, you can use the atom attribute. For example, a \mo[atom=bin]{div} b renders as

𝑎 div 𝑏.

Spaces in math mode are defined in “math units” (mu), which are 1/18 of an em of the current
math font (and are independent of the current text font size). Standard spaces inserted automatically
between tokens come in three varieties: thin (3 mu), medium (4 mu) and thick (5 mu). If needed, you
can insert them manually with the \thinspace (or \,), \medspace (or \>), and \thickspace (or \;)
commands. Negative space counterparts are available as \negthinspace (or \!), \negmedspace, and
\negthickspace. The \enspace, \quad, and \qquad commands from normal text mode are also avail-
able, but the spaces they insert scale relative to the text font size. Finally, you can add a space of any
size using the \mspace[width=<dimension>] command.

Macros.
To save you some typing, the math syntax lets you define macros with the following syntax:

\def{macro-name}{macro-body}

where in the macro’s body #1, #2, etc. will be replaced by the macro’s arguments. For instance:

\begin[mode=display]{math}
\def{diff}{\mfrac{\mo{d}#1}{\mo{d}#2}}
\def{bi}{\mi[mathvariant=bold-italic]{#1}}
\diff{\bi{p}}{t} = ∑_i \bi{F}_i

\end{math}

results in:

d𝒑
d𝑡 = 𝑖

𝑭𝑖

Whenmacros are not enough, creating newmathematical elements is quite simple: one only needs
to create a new class deriving from mbox (defined in packages/math/base-elements.lua) and define
the shape and output methods. shape must define the width, height and depth attributes of the ele-
ment,while outputmust draw the actual output. An mboxmayhave one ormore children (for instance,

SILE Packages

46

a fraction has two children—its numerator and denominator). The shape and output methods of the
children are called automatically.

Matrices, aligned equations, and other tables.
Tabular math can be typeset using the table command (or equivalently the mtable MathML tag).

For instance, to typeset a matrix:

\begin[mode=display]{math}
(
\table{

1 & 2 & 7 \\
0 & 5 & 3 \\
8 & 2 & 1 \\

}
)

\end{math}

will yield:

1 2 7
0 5 3
8 2 1

Tables may also be used to control the alignment of formulas:

\begin[mode=display]{math}
\{
\table[columnalign=right center left]{

u_0 &=& 1 \\
u_1 &=& 1 \\
u_n &=& u_{n−1} + u_{n−2}, \forall n ⩾ 2 \\

}
\end{math}

𝑢0 = 1
𝑢1 = 1
𝑢𝑛 = 𝑢𝑛−1 + 𝑢𝑛−2, ∀𝑛 ⩾ 2

Tables currently do not support all attributes required by the MathML standard, but they do allow to
control spacing using the rowspacing and columnspacing options.

Finally, here is a little secret. This notation:

\table{
1 & 2 & 7 \\
0 & 5 & 3 \\
8 & 2 & 1 \\

}

is strictly equivalent to this one:

\table{

5.8 Mathematical formulas

47

{1} {2} {7}
}{

{0} {5} {3}
}{

{8} {2} {1}
}

}

In other words, the notation using & and \\ is only a syntactic sugar for a two-dimensional array
constructed with braces.

Numbered equations.
Equations can be numbered in display mode.

When numbered=true, equations are numbered using a default “equation” counter:

𝑒𝑖π = −1 (1)

A different counter can be set by using the option counter=⟨id⟩, and this setting will also enable
numbering.

It is also possible to impose direct numbering using the number=⟨value⟩ option.

The default numbering format is (n), but this style may be overridden by defining a custom
\math:numberingstyle command. The counter or the direct value number is passed as a parameter to
this hook, as well as any other options.

Missing features.
This package still lacks support for some mathematical constructs, but hopefully we’ll get there.

Among unsupported constructs are: decorating symbols with so-called accents, such as arrows or
hats, “over” or “under” braces, and line breaking inside a formula.

5.9 Specialized environments
SILE’s standard set of packages provides a few high-level environment. Some are quite expected from
a typesetting system, and other also possibly serve as an illustration for class and package designers,
regarding how to use varying techniques.

5.9.1 lists

● Good maturity
The lists package provides enumerated and itemized (also known as bulleted lists) which can be nested
together.

Itemized lists
The itemize environment initiates a itemized list. Each item, unsurprisingly, is wrapped in an

\item command.

SILE Packages

48

The environment, as a structure or data model, can only contain item elements or other lists. Any
other element causes an error to be reported, and any text content is ignored with a warning.

• Lorem
◦ Ipsum

– Dolor

On each level, the indentation is defined by the lists.itemize.leftmargin setting (defaults to
1.5em) and the bullet is centered in that margin. Note that if your document has a paragraph indent
enabled at this point, it is also added to the first list level.

The package has a default bullet style for each level, but you can explicitly select a bullet symbol
of your choice to be used by specifying the options bullet=⟨character⟩ on the itemize environ-
ment. You can also force a specific bullet character to be used on a specific item with \item[bullet=

⟨character⟩].

Enumerated lists
The enumerate environment initiates an enumeration. Each item shall, again, be wrapped in an

\item command. This environment too is regarded as a structure, so the same rules as above apply.

The enumeration starts at one, unless you specify the start=⟨integer⟩ option (a numeric value,
regardless of the display format).

1. Lorem
i. Ipsum

a. Dolor

On each level, the indentation is defined by the lists.enumerate.leftmargin setting (defaults to
2em). Note, again, that if your document has a paragraph indent enabled at this point, it is also added
to the first list level.

The lists.enumerate.labelindent setting specifies the distance between the label and the previ-
ous indentation level (defaults to 0.5em). Tune these settings at your convenience depending on your
styles. If there is a more general solution to this subtle issue, we accept patches.2

The package has a default number style for each level, but you can explicitly select the display type
(format) of the values (as arabic, roman, or alpha), and the text prepended or appended to them, by
specifying the options display=⟨display⟩, before=⟨string⟩, and after=⟨string⟩ to the enumerate
environment.

Nesting
Both environments can be nested. The way they do is best illustrated by an example.

2. TeX typesets the enumeration label ragged left. Most word processing software do not.

5.9 Specialized environments

49

1. Lorem
i. Ipsum

• Dolor
a. Sit amet

◦ Consectetur

Vertical spaces
The package outputs lists starting after a line break, but it does not enforce a paragraph break

before or after the list. If you want the usual value of document.parskip to apply before and/or after
your list leave a blank line in your source document separating paragraphs as usual. Between list
items, however, the paragraph skip is switched to the value of the lists.parskip setting.

Other considerations
Do not expect these fragile lists to work in any way in centered or ragged-right environments, or

with fancy line-breaking features such as hanged or shaped paragraphs. Please be a good typographer.
Also, these lists have not yet been tried in right-to-left or vertical writing direction.

5.9.2 pullquote

◍ Usable with limitations
The pullquote package formats longer quotations in an indented blockquote block with decorative
quotation marks in the margins. Here is some text set in a pullquote environment:

“ An education is not howmuch youhave committed tomemory, or evenhowmuch you know.
It is being able to differentiate between what you do know and what you do not know. ”— Anatole France

Optional values are available for:
• author to add an attribution line
• setback to set the bilateral margins around the block
• color to change the color of the quote marks
• scale to change the relative size of the quote marks

If you want to specify what font the pullquote environment should use, you can redefine the
\pullquote:font command. By default it will be the same as the surrounding document. The font
style used for the attribution line can likewise be set redefining \pullquote:author-font, and the
font used for the quote marks can be set redefining \pullquote:mark-font.

5.9.3 verbatim

◍ Usable with limitations
The verbatim package is useful when quoting pieces of computer code and other text for which for-
matting is significant. It changes SILE’s settings so that text is set ragged right, with no hyphenation,
no indentation and regular spacing. It tells SILE to honormultiple spaces, and sets amonospaced font.

SILE Packages

50

Despite the name, verbatim does not alter the way that SILE sees special characters. You still need to
escape backslashes and braces: to produce a backslash, you need to write \\.

Here is some text set in the verbatim environment:

local function init (class, _)
class:loadPackage("rebox")
class:loadPackage("raiselower")

end

If you want to specify what font the verbatim environment should use, you can redefine the
\verbatim:font command. For example you could change it from XML like this:

<define command="verbatim:font">

</define>

5.9.4 specimen

● Good maturity
SILE has found itself becoming well used by type designers, who often want to create specimen doc-
uments to show off their new fonts. This package provides a few commands to help create test docu-
ments. (The fontproof class, available from the package manager, contains many more tools for cre-
ating specimens.) The \repertoire command prints out every glyph in the font, in a simple table. The
\pangrams command prints out a few pangrams for the Latin script. Finally, \set-to-width[width=
⟨dimension⟩]{⟨content⟩}will process each line of content, changing the font size so that the output
is a constant width.

\begin[width=4cm]{set-to-width}
CAPERCAILLIE
LAMMERGEYER
CASSOWARY
ACCENTOR DOWITCHER DOTTEREL
\end{set-to-width}

CAPERCAILLIE
LAMMERGEYER

CASSOWARY
ACCENTOR DOWITCHER DO EREL

5.9.5 boustrophedon

● Good maturity
Partly designed to show off SILE’s extensibility, and partly designed for real use by classicists, the
boustrophedonpackage allows you to typeset ancient Greek texts in the “ox-turning” layout: the first

5.9 Specialized environments

51

line is written left to right as normal, but the next is set right to left, then left to right, and so on. To
use it, you will need to set the font’s language to ancient Greek (grc) andwrap text in a boustrophedon
environment:

ΧΑΙΡΕΔΕΜΟΤΟΔΕΣΕΜΑΠΑΤΕΡΕΣΤΕΣΕΘΑΝΟΝΤΟΣΑ
ΝΦΙΧΑΡΕΣΑΓΑΘΟΝΠΑΙΔΑΟΛΟΦΘΡΟΜΕΝΟΣΦΑΙΔΙ

ΜΟΣΕΠΟΙΕ
(Under normal circumstances, that line would appear as ΧΑΙΡΕΔΕΜΟΤΟΔΕΣΕΜΑΠΑΤΕΡΕΣΤΕΣΕΘΑ

ΝΟΝΤΟΣΑΝΦΙΧΑΡΕΣΑΓΑΘΟΝΠΑΙΔΑΟΛΟΦΘΡΟΜΕΝΟΣΦΑΙΔΙΜΟΣΕΠΟΙΕ .)

5.9.6 chordmode

● Good maturity
This package provides the chordmode environment, which transforms lines like:

I’ve be<G>en a wild rover for many’s a <C>year

into:

I’ve be
G
en a wild rover for many’s a

C
year

The chords can be styled by redefining the \chordmode:chordfont command, and the offset be-
tween the chord name and text adjusted with the chordmode.offset setting.

5.10 Advanced font features
The following packages leverage SILE’s font default handling and the \font command with new capa-
bilities.

5.10.1 features

● Good maturity
SILE automatically applies ligatures defined by the fonts that you use. These ligatures are defined by
tables of featureswithin the font file. As well as ligatures (multiple glyphs displayed as a single glyph),
the features tables also declare other glyph substitutions.

The standard \font command provides an interface to selecting the features that you want SILE
to apply to a font. The features available will be specific to the font file; some fonts come with docu-
mentation explaining their supported features. Discussion of OpenType features is beyond the scope
of this manual.

These features can be turned on and off by passing “raw” feature names to the \font command
like so:

SILE Packages

52

\font[features="+dlig,+hlig"]{...} % turn on discretionary and historic ligatures

However, this is unwieldy and requires memorizing the feature codes.

The features package provides two commands, \add-font-feature and \remove-font-feature,
which make it easier to access OpenType features. The interface is patterned on the TeX package
fontspec; for full documentation of the OpenType features supported, see the documentation for that
package.3

Here is how you would turn on discretionary and historic ligatures with the features package:

\add-font-feature[Ligatures=Rare]\add-font-feature[Ligatures=Discretionary]
...
\remove-font-feature[Ligatures=Rare]\remove-font-feature[Ligatures=Discretionary]

5.10.2 font-fallback

◍ Usable with limitations
What happens when SILE is asked to typeset a character which is not in the current font? For instance,
we are currently using the Gentium font, which covers a wide range of European scripts; however, it
doesn’t contain any Japanese characters. So what if I ask SILE to typeset abc あ?

Many applications will find another font on the system containing the appropriate character and
use that font instead. But which font should be chosen? SILE is designed for typesetting situations
where the document or class author wants complete control over the typographic appearance of the
output, so it’s not appropriate for it to make a guess—besides, you asked for Gentium. So where the
glyph is not defined, SILE will give you the current font’s “glyph not defined” symbol (a glyph called
.notdef) instead.

But there are times when this is just too strict. If you’re typesetting a document in English and
Japanese, you should be able to choose your English font and choose your Japanese font, and if the
glyph isn’t available in one, SILE should try the other. The font-fallback package gives you a way to
specify a list of font specifications, and it will try each one in turn if glyphs cannot be found.

It provides two commands, \font:add-fallback and \font:clear-fallbacks. The parameters to
\font:add-fallback are the same as the parameters to \font. So this code:

\font:add-fallback[family=Symbola]
\font:add-fallback[family=Noto Sans CJK JP]

will add two fonts to try if characters are not found in the current font. Now we can say:

あば 😼x Hello worlあd.

3. http://texdoc.net/texmf-dist/doc/latex/fontspec/fontspec.pdf

5.10 Advanced font features

53

and SILE will produce:
あば😼x Hello worlあd.

\font:clear-fallbacks removes all font fallbacks from the list of fonts to try.
\font:remove-fallback removes the last added fallback from the list of fonts to try.

5.11 Advanced line-spacing
Wewill later document the default line-spacing algorithm used by SILE and the available settings that
may be tuned. Still, some packages are proposed for altering that algorithm andmay be useful in some
contexts.

5.11.1 grid

◍ Usable with limitations
In normal typesetting, SILE determines the spacing between lines of type according to the following
two rules:

• SILE tries to insert space between two successive lines so that their baselines are separated by
a fixed distance called the baselineskip.

• If this first rule would mean that the bottom and the top of the lines are less than two points
apart, then they are forced to be two points apart. (This distance is configurable, and called
the lineskip.)

The second rule is designed to avoid the situation where the first line has a long descender (letters
such as g, q, j, p, etc.) which abuts a high ascender on the second line (k, l, capitals, etc.).

In addition, the baselineskip contains a certain amount of “stretch,” so that the lines can expand
if this would help with producing a page break at an optimal location, and similarly spacing between
paragraphs can stretch or shrink.

The combination of all of these rules means that a line may begin at practically any point on the
page.

An alternative way of typesetting is to require that lines begin at fixed points on a regular grid.
Some people prefer the “color” of pages produced by grid typesetting, and the method is often used
when typesetting on very thin paper, as lining up the lines of type on both sides of a page ensures
that ink does not bleed through from the back to the front. Compare the following examples: on the
left, the lines are guaranteed to fall in the same places on the recto (front) and the verso (back) of the
paper; on the right, no such guarantee is made.

SILE Packages

54

The grid package alters the operation of SILE’s typesetter so that the two rules above do not apply;
lines are always aligned on a fixed grid, and spaces between paragraphs, etc., are adjusted to conform
to the grid. Loading the package adds two new commands to SILE: \grid[spacing=⟨dimension⟩] and
\no-grid. The first turns on grid typesetting for the remainder of the document; the second turns it
off again.

At the start of this section, we issued the command \grid[spacing=15pt] to set up a regular 15-
point grid. Here is some text typeset with the grid set up:

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.

And here is the same text after we issue \no-grid:

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.

5.11.2 linespacing

○ Experimental
SILE’s default method of inserting leading between lines should be familiar to users of TeX, but it is
not the most friendly system for book designers. The linespacing package provides a better choice
of leading systems.

After loading the package, you are able to choose the linespacingmode by setting the linespacing.

5.11 Advanced line-spacing

55

method parameter. The following examples have funny sized words in them so that you can see how
the different methods interact.

By default, this is set to tex. The other options available are:

• fixed. This set the lines at a fixed baseline-to-baseline distance, determined by the
linespacing.fixed.baselinedistance parameter. You can specify this parameter either
relative to the type size (1.2em) or as a absolute distance (15pt). This paragraph is set with a
fixed 1.5em baseline-to-baseline distance.

• fit-glyph. This sets the lines solid; that is, the lowest point on line 1 (either a descender like
q or, if there are no descenders, the baseline) will touch thehighest point of line 2, as
in this paragraph. You generally don’t want to use this as-is.

What you probably want to do is insert a constant (relative or absolute) space between the lines

by setting the linespacing.fit-glyph.extra-space parameter.This paragraph is set with 5 points
of space between the descenders and the ascenders.

• fit-font. This inspects each hbox on the line, and asks the fonts it finds for their bounding
boxes—the highest ascender and the lower descender. It then sets the lines solid. Essentially
each character is treated as if it is the same height, rather like composing a slug of metal type.
If there are things other than text on your line, or the text is buried inside other boxes, this
may not work well.

As with fit-glyph, you can insert extra space between the lines with the linespacing.fit-font.

extra-space parameter.

• css. This is similar to the method used in browsers; the baseline distance is set with the

linespacing.css.line-height parameter, and the excess space between this parameter

and the actual height of the line is distributed between the top and bottom of the line.

5.12 Document parts
You probably don’t need to load the auxiliary packages in this section directly. Their main job is to
provide more basic functionality to other packages and classes. Classes compose functionality from
different auxiliary packages. Nevertheless, these packages also provide several user-facing commands
of interest.

5.12.1 folio

● Good maturity
The folio package (which is automatically loaded by the plain class, and therefore by nearly every

SILE Packages

56

SILE class) controls the output of folios—the old-time typesetter word for page numbers.
It provides four commands to users:
• \nofolios: turns page numbers off.
• \nofoliothispage: turns page numbers off for one page, then on again afterward.
• \folios: turns page numbers back on.
• \foliostyle: a command you can override to style the page numbers. By default, they are

centered on the page.
If, for instance, you want to set page numbers in a different font you can redefine the command

like so:

\define[command=foliostyle]{\center{\font[family=Albertus]{\process}}}

If you want to put page numbers on the left side of even pages and the right side of odd pages,
there are a couple of ways you can do that. The complicated way is to define a command in Lua which
inspects the page number and then sets the number ragged left or ragged right appropriately. The
easy way is just to put your folio frame where you want it on the master page.

5.12.2 footnotes

◍ Usable with limitations
The footnotes package allows you to add footnotes to text with the \footnote command. Other com-
mands provided by the package, not described here, take care of formatting the footnotes.

Usually, a document class is responsible for automatically loading this package. Minimally, upon
initialization, it needs a frame identifier for the the footnotes, and one or more frame(s) which will
be reduced as the footnotes take place. By default, it uses, respectively, the footnotes and content

frames, which are assumed to be present in the default standard layout.
For the record, it internally relies on the insertionspackage and tells itwhich frame should receive

the footnotes that are typeset.

5.12.3 tableofcontents

◍ Usable with limitations
The tableofcontents package provides tools for class authors to create tables of contents (TOCs).
When you arewriting sectioning commands such as \chapter or \section, your classes should call the
\tocentry[level=⟨number⟩, number=⟨strings⟩]{⟨title⟩} command to register a table of contents
entry. At the end of each page the class will call a hook function (moveTocNodes) that collates the table
of contents entries from that pages and records which page they’re on. At the end of the document
another hook function (writeToc) will write this data to a file. The next time the document is built,
any use of the \tableofcontents (typically near the beginning of a document) will be able to read
that index data and output the TOC. Because the toc entry and page data is not available until after
rendering the document, the TOCwill not render until at least the second pass. If by chance rendering

5.12 Document parts

57

the TOC itself changes the document pagination (e.g., the TOC spans more than one page) it will be
necessary to run SILE a third time to get accurate page numbers shown in the TOC.

The \tableofcontents command accepts a depth option to control the depth of the content added
to the table.

If the pdf package is loaded before using sectioning commands, then a PDF document outline will
be generated. Moreover, entries in the table of contents will be active links to the relevant sections.
To disable the latter behavior, pass linking=false to the \tableofcontents command.

Class designers can also style the table of contents by overriding the following commands:
• \tableofcontents:headerfont: The font used for the header.
• \tableofcontents:level1item, \tableofcontents:level2item, etc.: Styling for entries.
• \tableofcontents:level1number, \tableofcontents:level2number, etc.: Deciding what to do

with entry section number, if defined: by default, nothing (so they do not show up in the table
of contents).

5.13 Bibliographies & Indexes
This section is devoted to packages collating references, in a broad sense.

5.13.1 bibtex

◍ Usable with limitations
BibTeX is a citation management system. It was originally designed for TeX but has since been inte-
grated into a variety of situations.

This experimental package allows SILE to read and process BibTeX .bib files and output citations
and full text references. (It doesn’t currently produce full bibliography listings.)

To load a BibTeX file, issue the command \loadbibliography[file=⟨whatever.bib⟩]

To produce an inline citation, call \cite{⟨key⟩}, which will typeset something like “Jones 1982”.
If you want to cite a particular page number, use \cite[page=22]{⟨key⟩}.

To produce a full reference, use \reference{⟨key⟩}.
Currently, the only supported bibliography style is Chicago referencing, but other styles should

be easy to implement. Adapt packages/bibtex/styles/chicago.lua as necessary.

Notes on the supported BibTeX syntax
The BibTeX file format is a plain text format for bibliographies.
The @type{…} syntax is used to specify an entry, where type is the type of the entry, and is case-

insensitive. Any content outside entries is ignored.
The @preamble and @comment special entries are ignored. The former is specific to TeX-based sys-

tems, and the latter is a comment (everything between the balanced braces is ignored).

SILE Packages

58

The @string{key=value} special entry is used to define a string or “abbreviation,” for use in other
subsequent entries.

The @xdata entry is used to define an entry that can be used as a reference in other entries. Such
entries are not printed in the bibliography. Normally, they cannot be cited directly. In this implemen-
tation, a warning is raised if they are; but as they have no known type, their formatting is not well-
defined, and might not be meaningful.

Regular bibliography entries have the following syntax:

@type{key,
field1 = value1,
field2 = value2,…

}

The entry key is a unique identifier for the entry, and is case-sensitive. Entries consist of fields,
which are key-value pairs. The field names are case-insensitive. Spaces and line breaks are not im-
portant, except for readability. On the contrary, commas are compulsory between any two fields of
an entry.

String values shall be enclosed in either double quotes or curly braces. The latter allows using
quotes inside the string, while the former does not without escaping them with a backslash.

When string values are not enclosed in quotes or braces, they must not contain any whitespace
characters. The value is then considered to be a reference to an abbreviation previously defined in
a @string entry. If no such abbreviation is found, the value is considered to be a string literal. (This
allows a decent fallback for fields where curly braces or double quotes could historically be omitted,
such as numerical values, and one-word strings.)

String values are assumed to be in the UTF-8 encoding, and shall not contain (La)TeX commands.
Special character sequences from TeX (such as ` assumed to be an opening quote) are not supported.
There are exceptions to this rule. Notably, the ~ character can be used to represent a non-breaking
space (when not backslash-escaped), and the \& sequence is accepted (though this implementation
does not mandate escaping ampersands).

Values can also be composed by concatenating strings, using the # character.
Besides using string references, entries have two other parent-child inheritance mechanisms al-

lowing to reuse fields from other entries, without repeating them: the crossref and xdata fields.
The crossref field is used to reference another entry by its key. The xdata field accepts a comma-

separated list of keys of entries that are to be inherited.
Some BibTeX implementations automatically include entries referenced with the crossref field

in the bibliography, when a certain threshold is met. This implementation does not do that.
Depending on the types of the parent and child entries, the child entry may inherit some or all

fields from the parent entry, and some inherited fields may be reassigned in the child entry. For
instance, the title in a @collection entry is inherited as the booktitle field in a @incollection

child entry. Some BibTeX implementations allow configuring the data inheritance behavior, but this

5.13 Bibliographies & Indexes

59

implementation does not. It is also currently quite limited on the fields that are reassigned, and only
provides a subset of the mappings defined in the BibLaTeX manual, appendix B.

Here is an example of a BibTeX file showing some of the abovementioned features:

@string{JIT = "Journal of Interesting Things"}
...
This text is ignored
...
@xdata{jit-vol1-iss2,
journal = JIT # { (JIT)},
year = {2020},
month = {jan},
volume = {1},
number = {2},

}
@article{my-article,
author = {Doe, John and Smith, Jane}
title = {Theories & Practices},
xdata = {jit-1-2},
pages = {100--200},

}

Some fields have a special syntax. The author, editor and translator fields accept a list of names,
separated by the keyword and. The legacy month field accepts a three-letter abbreviation for themonth
in English, or a number from 1 to 12. The more powerful date field accepts a date-time following
the ISO 8601-2 Extended Date/Time Format specification level 1 (such as YYYY-MM-DD, or a date range
YYYY-MM-DD/YYYY-MM-DD, and more).

5.13.2 indexer

○ Experimental
An index is essentially the same thing as a table of contents, but sorted. This package provides the
\indexentry command, which can be called as either \indexentry[label=⟨text⟩] or \indexentry

{⟨text⟩} (so that it can be called from amacro). Index entries are collated at the end of each page, and
the command \printindex will deposit them in a list. The entry can be styled using the \index:item
command.

Multiple indexes are available and an index can be selected by passing the index=⟨name⟩ parame-
ter to \indexentry and \printindex.

Classes using the indexer will need to call its exported function buildIndex as part of the end page
routine.

5.14 Miscellaneous utilities
This section introduces packages that could not fit in another category.

5.14.1 date

SILE Packages

60

● Good maturity
The date package provides the \date command, which simply outputs a date using the system’s date
function. It defaults to the current date and time, but can be used to format any other input time
as well using the time parameter. You can customize the format by passing the format parameter,
following the formatting codes in the Lua manual (https://www.lua.org/pil/22.1.html).

5.14.2 debug

● Good maturity
This package provides two commands: \debug, which turns on and off SILE’s internal debugging flags
(similar to using --debug=... on the command line), and \disable-pushback which is used by SILE’s
developers to turn off the typesetter’s pushback routine, because we don’t really trust it very much.

5.14.3 ifattop

○ Experimental
This package provides two commands: \ifattop and \ifnotattop. The argument of the command is
processed only if the typesetter is at the top of a frame or is not at the top of a frame respectively.

5.14.4 retrograde

● Good maturity
From time to time, the default behavior of a function or value of a setting in SILE might change with
a new release. If these changes are expected to cause document reflows they will be noted in release
notes as breaking changes. That generallymeans old documents will have to be updated to keep rend-
ing the same way. On a best-effort basis (not a guarantee) this package tries to restore earlier default
behaviors and settings.

For settings this is relatively simple. You just set the old default value explicitly in your document
or project. But first, knowing what those are requires a careful reading of the release notes. Then
you have to chase down the incantations to set the old values. This package tries to restore as many
previous setting values as possible to make old documents render like they would have in previous
releases without changing the documents themselves (beyond loading this package).

For functions things are a little more complex, but for as many cases as possible we'll try to allow
swapping old versions of code.

None of this is a guarantee that your old document will be stable in new versions of SILE. All of
this is a danger zone.

From inside a document, use \use[module=packages.retrograde, target=v0.15.5] to load fea-
tures from SILE v0.15.5.

This can also be triggered from the command line with no changes to a document:

$ sile -u 'packages.retrograde[target=v0.15.5]'

5.15 Frames and page layouts

61

5.15 Frames and page layouts
As we mentioned in the first chapter, SILE uses frames as an indication of where to put text onto the
page.

5.15.1 cropmarks

○ Experimental
Whenpreparing a document for printing, youmay be asked by the printer add cropmarks. Thismeans
that you need to output the document on a slightly larger page size than your target paper and add
crop marks to show where the paper sheet should be trimmed down to the correct size.

Actual paper size, true page content area and bleed/trim area can all be set via class options.
This package provides the \cropmarks:setup command which should be run early in your doc-

ument file. It places crop marks around the true page content. The crop marks are guaranteed
to stay outside the bleed/trim area, when defined. It also adds a header at the top of the page
with the filename, date and output sheet number. You can customize this header by redefining
\cropmarks:header.

5.15.2 frametricks

○ Experimental
The frametricks package assists package authors by providing a number of commands tomanipulate
frames.

The most immediately useful is \showframe. This asks the output engine to draw a box and label
around a particular frame. It takes an optional parameter id=⟨frame id⟩; if this is not supplied, the
current frame is used. If the ID is all, then all frames declared by the current class are displayed.

It’s possible to define frames such as sidebars which are not connected to the main text flow of a
page.We’ll see how to do that in a later chapter, but this raises the obvious question: if they’re not part
of the text flow, how do we get stuff into them? frametricks provides the \typeset-into command,
which allows you to write text into a specified frame:

\typeset-into[frame=sidebar]{ ... frame content here ... }

frametricks also provides a number of commands which, to be perfectly honest, we thought were
going to be useful, but haven’t quite ended up being as useful as all that.
content_

The command \breakframevertical breaks the current frame in two at the specified location into
an upper and lower frame. If the frame initially had the ID main, then main becomes the upper frame
(before the command) and the lower frame (after the command) is called main_. We just issued a
\breakframevertical command at the start of this paragraph, and now we will issue the command
\showframe. As you can see, the current frame is called content_ and now begins at the start of the
paragraph.

SILE Packages

62

Similarly, the \breakframehorizontal command breaks the frame in two into a left and a right
frame. The command takes an optional parameter offset=⟨dimension⟩, specifying where on the line
the frame should be split. If offset is not supplied, the frame is split at the current position in the
line.

The command \shiftframeedge allows you to reposition the current frame left or right. It takes
left and/or right parameters, which can be positive or negative dimensions. It should only be used
at the top of a frame, as it reinitializes the typesetter object.

Combining all of these commands, the \float command breaks the current frame, creates a small
frame to hold a floating object, flows text into the surrounding frame, and then, once text has de-
scended past the floating object, moves the frame back into place again. It takes two optional param-
eters, bottomboundary=⟨dimension⟩ and/or rightboundary=⟨dimension⟩, which open up additional
space around the frame.

To reiterate: we started playing around with frames like this in the early days of SILE and they
have not really proved a good solution to the things we wanted to do with them. They’re great for
arranging where content should live on the page, but messing about with them dynamically seems to
create more problems than it solves. There’s probably a reason why InDesign and similar applications
handle floats, drop caps, tables, and so on inside the context of a content frame rather than bymessing
with the frames themselves. If you feel tempted to play with frametricks, there’s almost always a
better way to achieve what you want without it.

5.15.3 twoside

◍ Usable with limitations
A book-like class usually sets up left and right mirrored page masters. The twoside package is then
responsible for swapping between the two left and right frames, running headers, and so on. As it is
normally loaded and initialized by a document class, its main function in mirroring master frames
does not provide any user-serviceable parts. It does supply a few user-facing commands for conve-
nience.

The \open-double-page ejects whatever page is currently being processed, then checks if it landed
on an even page. If so, it ejects another page to assure content starts on an odd page.

The \open-spread is similar but a bit more tailored to use in book layouts. By default, headers and
folios will be suppressed automatically on any empty pages ejected, making them blank. It can also
accept three parameters. The odd parameter (default true) can be used to disable the opening page
being odd, hence opening an even page spread. The double parameter (default true) can be used to
always output at least one empty even page before the starting an odd page. The blank parameter
(default true) can be used to not suppress headers and folios on otherwise empty pages.

Lastly the \open-spread-eject command can be overridden to customize the output of blank
pages. By default it just runs \supereject, but you could potentially add decorative content or other
features in the otherwise empty space.

5.15 Frames and page layouts

63

5.15.4 masters

● Good maturity
Themasters functionality is also itself an add-on package. It allows a class to define sets of frames and
switch between them either temporarily or permanently. It defines the commands \define-master-
template (which is patterned on the \pagetemplate function we will meet in Chapter 8), \switch-
master, and \switch-master-one-page. See tests/masters.sil for more about this package.

5.15.5 break-firstfit

◍ Usable with limitations
SILE’s normal page breaking algorithm is based on the Knuth-Plass “best-fit” method, which tests a
variety of possible paragraph constructions before deciding on the visually optimal one. That guaran-
tees great results for texts which require full justification, but some languages don’t need that degree
of complexity. In particular, Japanese is traditionally typeset on a grid system with characters being
essentially monospaced. You don’t need to do anything clever to break that into lines: just stop when
you get to the end of the line and start a new one. This package implements this “first-fit” method.
It’s designed to be used by other packages so it doesn’t currently provide any user-facing commands.

5.15.6 balanced-frames

○ Experimental
This package attempts to ensure that the main content frames on a page are balanced; that is, that
they have the same height. In your frame definitions for the columns, you will need to ensure that
they have the parameter balanced set to true. See the example in tests/balanced.sil.

The current algorithm does not work particularly well, and a better solution to the column prob-
lem is being developed.

5.16 Low-level internal packages
In addition, there are packages that you very probably don’t need to use directly when typesetting
documents.

5.16.1 bidi

● Good maturity
Scripts like the Latin alphabet you are currently reading are normally written left to right (LTR);
however, some scripts, such as Arabic and Hebrew, are written right to left (RTL). The bidi package,
which is loaded by default, provides SILE with the ability to correctly typeset right-to-left text and
also documents which mix right-to-left and left-to-right typesetting. Because it is loaded by default,
you can use both LTR and RTL text within a paragraph and SILE will ensure that the output characters
appear in the correct order.

SILE Packages

64

The bidi package provides two commands, \thisframeLTR and \thisframeRTL, which set the de-
fault text direction for the current frame. If you tell SILE that a frame is RTL, the text will start in the
right margin and proceed leftward. It also provides the commands \bidi-off and \bidi-on, which
allow you to trade off bidirectional support for a dubious increase in speed.

5.16.2 color-fonts

● Good maturity
The color-fonts package adds support for fonts with multi-colored glyphs (that is, OpenType fonts
with COLR and CPAL tables). This package is automatically loaded when such a font is detected.

5.16.3 counters

● Good maturity
Various parts of SILE such as the footnotes package and the sectioning commands keep a counter of
things going on: the current footnote number, the chapter number, and so on. The counters package
allows you to set up, increment, and typeset named counters. It provides the following commands:

• \set-counter[id=⟨counter-name⟩, value=⟨value⟩]: Sets the counter with the specified
name to the given value. The command takes an optional display=⟨display-type⟩ parameter
to set the display type of the counter (see below).

• \increment-counter[id=⟨counter-name⟩]: Increments the counter by one. The command cre-
ates the counter if it does not exist and also accepts setting the display type.

• \show-counter[id=⟨counter-name⟩]: Typesets the value of the counter according to the coun-
ter’s declared display type.

The available built-in display types are:
• arabic, the default
• alpha, for lower-case alphabetic counting
• Alpha, for upper-case alphabetic counting
• roman, for lower-case Roman numerals
• ROMAN, for upper-case Roman numerals
• greek, for Greek letters in alphabetical order (not Greek numerals)

The ICU library also provides ways of formatting numbers in global (non-Latin) scripts. You can
use any of the display types in this list: http://www.unicode.org/repos/cldr/tags/latest/common/
bcp47/number.xml. For example, display=being will format your numbers in Bengali digits.

So, for example, the following SILE code:

\set-counter[id=mycounter, value=2]
\show-counter[id=mycounter]
\increment-counter[id=mycounter, display=roman]
\show-counter[id=mycounter]

5.16 Low-level internal packages

65

produces:

2

iii

The package also provides multi-level (hierarchical) counters, of the kind used in sectioning com-
mands:

• \set-multilevel-counter[id=⟨counter-name⟩, level=⟨level⟩, value=⟨value⟩]: Sets the
multi-level counter with the specified name to the given value at the given level. The command
also takes an optional display=⟨display-type⟩, also acting at the given level.

• \increment-multilevel-counter[id=⟨counter-name⟩]: Increments the counter by one at its
current (deepest) level. The command creates the counter if it does not exist. If given the
level=⟨level⟩ parameter, the command increments that level, clearing any lower level (and
filling previous levels with zeros, if they weren’t properly set). It also accepts setting the dis-
play type at the target level.

• \show-multilevel-counter[id=⟨counter-name⟩]: Typesets the value of the multi-level
counter according to the counter’s declared display types at each level. By default, all levels
are output; option level=⟨level⟩ may be used to display the counter up to a given level.
Option noleadingzeros=true skips any leading zero (which may happen if a counter is at
some level, without previous levels having been set).

5.16.4 insertions

◍ Usable with limitations
The footnotes package works by taking auxiliary material (the footnote content), shrinking the cur-
rent frame and inserting it into the footnote frame. This is powered by the insertions package; it
doesn’t provide any user-visible SILE commands, but provides Lua functionality to other packages.
TeXwizardsmay be interested to realize that insertions are implemented by an external add-on pack-
age, rather than being part of the SILE core.

5.16.5 infonode

● Good maturity

This package is only for class designers.

While typesetting a document, SILE first breaks a paragraph into lines, then arranges lines into a
page, and later outputs the page. In other words, while it is looking at the text of a paragraph, it is not
clear what page the text will eventually end up on. This makes it difficult to produce indexes, tables
of contents, and so on, where one needs to know the page number for a particular element.

SILE Packages

66

To get around this problem, the infonode package allows you to insert information nodes into the
text stream;when a page is outputted, these nodes are collected into a list, and a class’s output routine
can examine this list to determine which nodes fell on a particular page. infonode provides the \info
command to put an information node into the text stream; it has two required parameters, category=
⟨name⟩ and value=⟨any object⟩. Categories are used to group similar sets of node together.

As an example, when typesetting a Bible, you may wish to display which range of verses are on
each page as a running header. During the command which starts a new verse, you would insert an
information node with the verse reference:

SILE.call("info", { category = "references", value = ref }, {})

During the endPage method which is called at the end of every page, we look at the list of “refer-
ences” information nodes:

local refs = SILE.scratch.info.thispage.references
local runningHead = SILE.shaper.shape(refs[1] .. " - " .. refs[#refs])
SILE.typesetNaturally(rhFrame, runningHead);

5.16.6 inputfilter

● Good maturity
The inputfilter package provides ways for class authors to transform the input of a SILE document
after it is parsed but before it is processed. It does this by allowing you to rewrite the abstract syntax
tree representing the document.

Loading inputfilter into your class with class:loadPackage("inputfilter") provides you with
two new Lua functions: transformContent and createCommand. transformContent takes a content
tree and applies a transformation function to the text within it. See https://sile-typesetter.org

/examples/inputfilter.sil for a simple example, and https://sile-typesetter.org/examples/

chordmode.sil for a more complete one.

5.16.7 chapterverse

○ Experimental
The chapterverse package is designed as a helper package for book classes which deal with versified
content such as scriptures. It provides commands which will generally be called by the higher-level
\verse and \chapter (ormoral equivalent) commands of the classeswhichhandle this kind of content:

• \save-book-title takes its argument and squirrels it away as the current book name.
• \save-chapter-number and \save-verse-number does the same but for the chapter and verse

reference respectively.
• \format-reference is expected to be called from Lua code with a content table of {book = ...,

chapter = ..., verse = ...} and typesets the reference in the form cc:vv. If the parameter
showbook=true is given then the book name is also output. (You can override this command to

5.16 Low-level internal packages

67

output your references in a different format.)
• \first-reference and \last-reference typeset (using \format-reference) the first reference

on the page and the last reference on the page respectively. This is helpful for running headers.

5.16.8 parallel

○ Experimental
The parallel package provides the mechanism for typesetting diglot or other parallel documents.
When used by a class such as classes/diglot.lua, it registers a command for each parallel frame,
to allow you to select which frame you’re typesetting into. It also defines the \sync command, which
adds vertical spacing to each frame such that the next set of text is vertically aligned. See https://

sile-typesetter.org/examples/parallel.sil and the source of classes/diglot.lua for examples
which make the operation clear.

5.16.9 autodoc

● Good maturity
The autodoc package extracts documentation information fromother packages. It’s used to construct
the SILEmanual. Keeping package documentation in the package itself keeps the documentation near
the implementation, which (in theory) makes it easy for documentation and implementation to be in
sync.

For that purpose, it provides the \package-documentation{⟨package⟩} command.
Properly documented packages should export a documentation string containing their documen-

tation, as a SILE document.
For documenters and package authors, autodoc also provides commands that can be used in their

package documentation to present various pieces of information in a consistent way.
Setting names can be fairly long (e.g., namespace.area.some-stuff). The \autodoc:setting com-

mand helps line-breaking them automatically at appropriate points, so that package authors do not
have to do so manually.

With the \autodoc:command command, one can pass a simple command, or even an extended com-
mand with parameters and arguments, without the need for escaping special characters. This relies
on SILE’s AST (abstract syntax tree) parsing, so you benefit from typing simplicity, syntax check, and
evenmore—such as styling.4 Moreover, for text content in parameter values or command arguments,

4. If the color package is loaded and the autodoc.highlighting setting is set to true, you get syntax high-
lighting.

SILE Packages

68

if they are enclosed between angle brackets, theywill be presented in a distinguishable style. Just type
the command as it would appear in code, and it will be nicely typeset. It comes with a few caveats,
though: parameters are not guaranteed to appear in the order you entered them, and some purely
syntactic sequences are simply skipped and not reconstructed. Also, it is not adapted to math-related
commands. So it comes with many benefits, but also at a cost.

The \autodoc:environment command takes an environment name or a command, but displays it
without a leading backslash.

The \autodoc:setting, \autodoc:command, and \autodoc:environment commands all check the
validity and existence of their inputs. If you want to disable this feature (e.g., to refer to a setting
or command defined in another package or module that might not yet be loaded), you can set the
optional parameter check to false. Note, however, that for commands, it is applied recursively to the
parsed AST—so it is a all-or-none trade-off.

The \autodoc:parameter commands takes either a parameter name, possibly with a value (which
as above, may be bracketed) and typesets it in the same fashion.

The autodoc:codeblock environment allows typesetting a block of code in a consistent way. This
is not a true verbatim environment, and you still have to escape SILE’s special characters within it
(unless calling commands is what you really intend doing there, obviously). For convenience, the
package also provides a raw handler going by the same name, where you do not have to escape the
special characters (backslashes, braces, percents).

The \autodoc:example marks its content as an example, possibly typeset in a different choice of
font.

The \autodoc:note outputs its content as a note, in a dedicated framed and indented block. The
\autodoc:package and \autodoc:class commands are used to format a package and class name.

5.16.10 pdf

◍ Usable with limitations
The pdf package enables basic support for PDF links and table-of-contents entries. It provides the
four commands \pdf:destination, \pdf:link, \pdf:bookmark, and \pdf:metadata.

The \pdf:destination parameter creates a link target; it expects a parameter called name to
uniquely identify the target. To create a link to that location in the document, use \pdf:link[dest=

⟨name⟩]{⟨content⟩}.
The \pdf:link command accepts several options defining its border style: a borderwidth length

setting the border width (defaults to 0, meaning no border), a borderstyle string (can be set to
underline or dashed, otherwise a solid box), a bordercolor color specification for this border (de-
faults to blue), and finally a borderoffset length for adjusting the border with some vertical space
above the content and below the baseline (defaults to 1pt). Note that PDF renderers may vary on how
they honor these border styling features on link annotations.

It also has an external option for URL links, which is not intended to be used directly—refer to

5.16 Low-level internal packages

69

the url package for more flexibility typesetting external links.
To set arbitrary key-value metadata, use something like \pdf:metadata[key=Author, value=

J. Smith]. The PDF metadata field names are case-sensitive. Common keys include Title, Author,
Subject, Keywords, CreationDate, and ModDate.

5.16.11 pdfstructure

◍ Usable with limitations
For PDFdocuments to be considered accessible, theymust contain a description of the PDF’s document
structure. This package allows structure trees to be created and saved to the PDF file. Currently this
provides a low-level interface to creating nodes in the tree; classes which require PDF accessibility
should use the \pdf:structure command in their sectioning implementation to declare the document
structure.

See tests/pdf.sil for an example of using the pdfstructure package to create a PDF/UA compat-
ible document.

5.17 Highly experimental packages
The following packages are not documented here: complex-spaces, pagebuilder-bestfit, pandoc,
simpletable, xmltricks.

These packages are not ready for use in production and are subject to change without notice in future
versions.

SILE Packages

70

Chapter 6
SILE Macros and Commands
One of the reasons that we use computers is that they are very good at doing repetitive jobs for us,
so that we don’t have to. Perhaps the most important skill in operating computers, and particularly
in programming computers, is noticing areas where an action is being repeated, and allowing the
computer to do the work instead of the human. In other words, Don’t Repeat Yourself.

The same is true in operating SILE. After you have been using the system for a while, you will
discover that there are patterns of input that you need to keep entering again and again.

6.1 A simple macro
For instance, let’s suppose thatwewant to design a nice little “bumpy road” logo for SILE. (Aficionados
of TEX and friends will be familiar with the concept of bumpy road logos.) Our logo will look like this:
SIL . It’s not a great logo, but we’ll use it as SIL ’s logo for the purposes of this section.

To typeset this logo, we need to ask SIL to: typeset an ‘S’; typeset an ‘I’ lowered by a certain amount
(half an ex, as it happens); typeset an ‘L’; walk backwards along the line a tiny bit; typeset a smaller-
sized ‘E’ raised by a certain amount, using the features package to choose a small capital ‘E’.

In SIL code, that looks like:

S%
\lower[height=0.5ex]{I}%
L%
\kern[width=-.2em]\raise[height=0.6ex]{\font[features=+smcp]{e}}%

(Don’t worry about the \kern command for the moment; we’ll come back to that later. The %’s
prevent newlines from becoming spaces.)

We’ve used our logo four times already in this chapter, and we don‘t want to have to input that
whole monstrosity each time we do so. What we would like to do is tell the computer “this is SIL ’s
logo; each time I enter \SILE, I want you to interpret that as S\lower[height=0.5ex]{I}L\kern[

width=-.2em]\raise[height=0.6ex]{\font[features=+smcp]{e}}”.
In other words, we want to define our own commands.
SILE1 allows you to define your own commands in two ways. The simplest commands of all are

those like \SILE above: “when I write \x, I want SILE to pretend that I had written X \Y Z instead.”
These are called macros, and the process of pretending is called macro expansion.

1. Let’s give up on the logo at this point.

You can define these kinds of macros within a SILE file itself. In this very file, we entered:

\define[command=SILE]{%
S%
\lower[height=0.5ex]{I}%
L%
\kern[width=-.2em]\raise[height=0.6ex]{\font[features=+smcp]{e}}%
}

We are using the built-in SILE command \define. \define takes an option called command; its value
is the name of the command we are defining. The content of the \define command is a series of SILE
instructions to be executed when the command is used.

At this point it’s worth knowing the precise rules for allowable names of SILE commands.
Commands in XML-flavor input files must be allowable XML tag names or else your input files will not

be well formed. Command names in TeX-flavor input files may consist of any number of alphanumeric
characters, hyphens or colons. Additionally, any single character is a valid TeX-flavor command name.
(Hence \\ for typesetting a backslash.)

When it comes to defining commands, commands defined by an XML-flavor file can actually have
any name that you like—even if they are not accessible from XML-flavor! (You may define oddly-named
commands in a XML-flavor SILE file and then use them in a TeX-flavor SILE file.) Commands defined
in TeX-flavor must have names which are valid parameter values, or else they will not parse correctly
either; parameter values happen to consist of any text up until the nearest comma, semicolon, or closing
square bracket.

6.2 Macro with content
Now let’s move on to the next level. Sometimes you will want to create commands which are not
simply replacements, but which have arguments of their own. As an example, let’s say we use the
color package to turn a bit of text red like this. The usual way to do that is to say

\color[color=red]{like this}

However, we‘re not always going towant to be highlighting thewords “like this”.Wemightwant
to be able to highlight other text instead. We need the ability to wrap the command \color[color=

red]{...} aroundour chosen content. In otherwords,wewant to be able to define our own commands
which take arguments.

The way we express this in SILE is with the \process command. \process is only valid within the
context of a \define command (you’ll mess everything up if you try using it somewhere else), and it
basically means “do whatever you were planning to do with the arguments to this command.” So if
we want to a command which makes things red, we can say:

SILE Macros and Commands

72

\define[command=red]{\color[color=red]{\process}}
…
Making things red is a \red{silly} way to emphasize text.

You can’t call \processmore than once within the same macro.
In the definition of the \chapter command, we want to (1) display the chapter name in a big bold

font, and (2) use the chapter name as the left running header. If you try writing the \chapter command
as a macro, you will get stuck—once you’ve \processed the chapter name to display it in bold, you won’t
be able to process it again to set the running header.

So the \chapter command cannot be written as a simple macro. The other way to implement your
own commands is to write them in the Lua programming language, which is what happens for \chapter.
This is deliberate: the \define command really is meant to be used just for simple things, because we
believe that programming tasks should be done in a programming language. So don’t be afraid to write
your own commands in Lua—it’s not too difficult, and if you’re creating any serious document format
yourself (rather than processing a document using a class that someone else has written or adding minor
formatting tweaks through customization hooks that classes give you) you should expect to write it in
Lua, as you’re almost certainly going to need to do so. We will see how to do this in later chapters.

6.3 Nesting macros
That said, one thing you can do is to call a macro within a macro. This should be obvious, because a
macro is just a replacement for the current processing step—when SILE reads a macro command, it
behaves as if you had entered the definition of the macro instead, and of course such a definition can
contain other commands.

So it is possible even within the simple scope of macro processing to achieve quite a lot of automa-
tion.

For instance, let’s build a macro that italicizes its content and wraps it in a narrower text block.
Here is one way to define such a <note> macro, in XML flavor:

<define command="narrower">
<set parameter="document.lskip" value="24pt"><process/><par/></set>
</define>
<define command="notefont">
<process/>
</define>
<define command="note">
<narrower><notefont><process/></notefont></narrower>
</define>

The only command we have not yet met here is \set, which we will now investigate.

6.3 Nesting macros

73

Chapter 7
SILE Settings
As well as commands, SILE offers a variety of knobs and levers which affect how it does its job. Chang-
ing these parameters can have anything from a subtle to a dramatic effect on the eventual document.
External packages may declare their own settings, which are documented accordingly. Here we will
run through the settings which are built into the SILE system itself.

Settings in SILE are namespaced so that the name of the setting gives you some kind of clue as to
what area of the system it will affect, and so that packages can define their own settings without
worrying that they will be interfering with other packages or the SILE internals. Namespacing of
settings takes the form area.name—so for instance, typesetter.orphanpenalty is the setting which
changes how the typesetter penalizes orphan (end-of-paragraph) lines.

The interface to changing settings from within a SILE document is the \set command. It takes
several options, the most basic one being parameter, which expresses which setting is being changed.
The value option expresses the value to which the setting is being changed. As an example:

\set[parameter=typesetter.orphanpenalty, value=250]

Two additional options are accepted. The makedefault option can added so that whatever value
you set sticks as the new default. The reset can be used without a value option to reset whatever the
current value is back to the default. Note that these two options are mutually exclusive.

\set[parameter=typesetter.orphanpenalty, value=250, makedefault=true]

or:

\set[parameter=typesetter.orphanpenalty, reset=true]

If the \set command is provided with any content, then the change of setting is localized to the
content of the argument. In other words, this code:

\set[parameter=typesetter.orphanpenalty, value=250]{\lorem}

will change the orphan penalty to 250, typeset 50 words of dummy text, and then return the orphan
penalty to its previous value.

If you are working in Lua, you have two choices to work with. As with any registered command
you can call it using SILE.call(). For example:

SILE.call("set", { parameter = "typesetter.orphanpenalty", value = 250 })

There is nothing wrong with this and it allows you to optionally pass content that is wrapped in
those settings. However there is also a slightly lower level function that is more idiomatic of Lua code

than SILE that uses positional arguments instead of named options:

SILE.settings:set("typesetter.orphanpenalty", 250)

The third and fourth optional arguments are for makedefault and reset respectively.
Now, let’s begin looking at what each of the built-in settings does, starting from the most obvious

and moving towards the most subtle.

7.1 Spacing settings
The document.lskip and document.rskip settings are glue parameters which are added, respectively,
to the left and right side of every line. Setting document.lskip to a positive length effectively increases
the left margin of the text. Similarly, document.rskip adds some space to the right side of every line.

Note that these skip settings are not the same as pagemargins. The document.lskip and document.
rskip values are applied inside of the current frame and are relative to the edge of the frame, not
to the edge of the page. They are best used for temporary adjustments to the margins relative to the
normalmargins, such as to indent a pull-quote. They can also be negative, pulling the effectivemargin
outside of the current frame.

A glue parameter is slightly different from an ordinary dimensioned length. Glue basically means
“space,” but as well as signifying a length, it also has two additional optional components: stretch and
shrink, specified as <dimension> plus <dimension> minus <dimension>. The first dimension is the
basic length, the stretch is the maximum length that can be added to it, and the shrink is some length
that can be taken away from it. For instance, 12pt plus 6pt minus 3pt specifies a space that would
ideally by 12 points, but can expand or contract from a minimum of 9 points to a maximum of 18 points.

Let’s think about how the center environment is implemented. First, we will add incredibly
stretchable glue to the left and right margins, like so:

\set[parameter=document.lskip,value=0pt plus 100000pt]
\set[parameter=document.rskip,value=0pt plus 100000pt]

This produces the following:

Here is some text which is almost centered. However, there are three problems: rst, the
normal paragraph indentation is applied, meaning the rst line of text is indented. Second, the
space between words is stretchable, meaning that the lines are stretched out so they almost seem
justi ed. Finally, by default SILE adds very large glue at the end of each paragraph so that when
the text is justi ed, the spacing of the last line is not stretched out of proportion. is makes the
centering of the last line look a bit odd. We will deal with these three issues in the following
paragraphs.

SILE Settings

76

The indentation at the start of each paragraph is controlled by the setting document.parindent;
this is a glue parameter, and by default it’s set to 20pt with no stretch and shrink. (In fact, the amount
added to the start of the paragraph is current.parindent. After each paragraph, current.parindent
is reset to the value of document.parindent. The \noindent command works by setting current.

parindent to zero.)

How would you make a paragraph like this with a “hanging” indentation? We’ve set the document.

lskip to 20 points, and the current.parindent to minus 20 points. In other words, we called:
\set[parameter=document.lskip, value=20pt] and \set[parameter=current.parindent,

value=-20pt].

The space between paragraphs is set with the glue parameter document.parskip. It’s normally set
to five points with one point of stretchability.

7.1.1 Line spacing settings

As we mentioned in the section on grid typesetting, the rules for spacing between lineswithin a para-
graph is determined by two rules. Let’s reiterate those rules now in terms of settings:

• SILE tries to insert space between two successive lines to make their baselines exactly
document.baselineskip apart.

• If this first rule would mean that the bottom and the top of the lines are less than document.

lineskip apart, then they are forced to be document.lineskip apart.

This linebreaking method is fiddly, and book designers may prefer to work with the tools provided by the
linespacing package.

7.1.2 Word spacing settings

There are multiple ways of defining the space between words. By default, the space between words
is determined by the width of the space character in the current font. To help with justifying the
text, the spaces are shrinkable and stretchable. Specifically, if the width of a space in the current font
settings is ⟨space⟩, then the width of the space between words is shaper.spaceenlargementfactor
× ⟨space⟩ plus shaper.spacestretchfactor × ⟨space⟩ minus shaper.spaceshrinkfactor × ⟨space⟩.
The default values of these settings make the space width 1.2 ⟨space⟩ plus 0.5 ⟨space⟩ minus

0.333 ⟨space⟩.
If you want to set the word space width explicitly, you can set the document.spaceskip setting.

You will also need to turn off the setting shaper.variablespaces, which allows the width of a space
to vary based on context (otherwise known as “space kerning”). If you want to go back to the default
(measuring the space character of the font), then you need to turn on shaper.variablespaces (set
it to a true value) and also unset the setting document.spaceskip. To unset it, just call \set with no

7.1 Spacing settings

77

value parameter: \set[parameter=document.spaceskip].
Note that non-breaking spaces (U+00A0), following the guidelines of Unicode Annex 14 (UAX 14),

are treated by default as stretchable or shrinkable akin to regular inter-word spaces, contributing to
text justification and alignment for consistent layout.

If youwant to disable this behavior, the languages.fixedNbsp settingmay be set to true to enforce
fixed-width non-breaking spaces.

Some typography conventions use an em-dash at the start of a paragraph line to denote a speaker
change in a dialogue. This is the case in particular in French and Turkish typography. By default, all
spaces following an em-dash at the beginning of a paragraph in your input are replaced by a sin-
gle fixed inter-word space, so that subsequent dialogue lines all start identically, while other inter-
word spaces may still be variable for justification purposes. To cancel this behavior, the typesetter.
fixedSpacingAfterInitialEmdash setting may be set to false.

7.1.3 Letter spacing settings

You can also put spaces in between letters with the document.letterspaceglue setting.
This paragraph is set with document.letterspaceglue set to 0pt plus 4pt, which allows the

typesetter to insert tiny bits of spacing between the letters to improve the fitting of the paragraph,
even though it would prefer to keep the letterspacing at zero points if possible. (Letter spacing is not
considered a preferable way to solve justification problems.)

This paragraph is set with document.letterspaceglue set to 0.3pt, which forces the typesetter
to insert tiny bits of spacing between the letters. Frederic Goudy is credited with saying that
anyone who would letterspace lowercase would steal sheep.1

7.2 Typesetter settings
The settings which affect SILE’s spacing controls have the most obvious effect on a document; the
typesetter itself has some knobs that can be twiddled.

7.2.1 Paragraphing

typesetter.widowpenalty and typesetter.orphanpenalty2 affect how strongly SILE is averse to leav-
ing stray lines at the start and end of pages. A widow happens when a page is broken leaving one line
at the bottom of a page; an orphan line is the last line in a paragraph broken off at the top of the page.

1. He was probably talking about blackletter, but it’s still true.
2. TeX users, please notice the renaming.

SILE Settings

78

By default, the penalty attached to breaking the page at one of these places is 150 penalty points. This
value can be any number up to 10000, which means “never break at this point.”

SILE automatically inserts a piece of massively stretchable glue at the end of each paragraph;
without this, the justification algorithm would apply justification to the entire paragraph, includ-
ing the last line, and produce a fully justified paragraph. (Normally we want the last line of a
justified paragraph to be left-aligned.) The size of this glue is defined in the setting typesetter.

parfillskip. Its default value is 0pt plus 10000pt but for this current paragraph, we have unset it.
Now we can finally complete our implementation of centering:

\set[parameter=document.lskip,value=0pt plus 100000pt]
\set[parameter=document.rskip,value=0pt plus 100000pt]
\set[parameter=document.spaceskip,value=0.5en]
\set[parameter=current.parindent,value=0pt]
\set[parameter=document.parindent,value=0pt]
\set[parameter=typesetter.parfillskip,value=0pt]

And this is (more or less) how the center environment is de ned in the plain class: we make the
margins able to expand but the spaces not able to expand; we turn o indenting at the start of

the paragraph, and we turn o the lling glue at the end of the paragraph.

7.2.2 Automated italic correction

When an italicized word is followed or preceded by non-italicized text, the spacing may need to be
adjusted, or “corrected”, so that the characters do not overlap. You might thus want to insert some
additional space between italicized words and non-italicized ones.

Here is some gibberish exemplifying the issue.
(luff) ¡ ancyful proof! [puff] luffⁿ

Inserting the necessary spaces manually is quite tedious, not to say impractical. However, the
concept of italic correction does not exist in OpenType fonts, and they do not provide themetrics that
would allow a typesetting system to implement it easily.3 A heuristic approach is to use the difference
between a glyph’s bounding box and its advance width (when switching from italics to roman) or
its bearing width (the other way round). Assuming italics is slanted forward (in left-to-right writing
direction) and that italicized glyphs usually reach their maximum extent to the right towards their
top (and towards their bottom, on their left side), then it is possible to approximate a fairly decent
correction.

3. This would apply to Graphite fonts too. More generally, there is no known font format supporting kerning
across font style changes. (Well, some TeX fonts have such a possibility, but it does not really help here.)

7.2 Typesetter settings

79

Be aware, nevertheless, that this solution cannot be made perfect, even assuming a reasonable
choice of fonts. Pathological cases may still occur, even in latin scripts, for which there is no solution
but using manual kerning.

To enable automated italic correction, you can set the typesetter.italicCorrection setting to
true. Let’s turn it on and check how our previous gibberish now behaves.

(luff) ¡ ancyful proof ! [puff] luff ⁿ

Note that this setting only works on full paragraphs, or with horizontal boxes constructed with
\hbox{⟨content⟩}.4 In other terms, turning it on or off around just a few words in a sentence will not
have the intended effect.

7.3 Linebreaking settings
SILE’s linebreaking algorithm is lifted entirely from TeX, and somaintains the same level of customiz-
ability as TeX. Only the API interfaces and units have been adapted as appropriate. Here is a quick
run-down of the settings applicable to the line-breaking algorithm. You are expected to know what
you are doing with these.

• linebreak.tolerance: How bad a breakpoint is before it is rejected by the algorithm. (Default:
500)

• linebreak.parShape: Whether to utilize a callback to SILE.linebreak:parShape() to get a cus-
tomized shape for each line in a paragraph. (Default: false)

• linebreak.pretolerance: If there are no breakpoints better than this, the paragraph is con-
sidered for hyphenation. (Default: 100)

• linebreak.hangIndent: How far to indent initial line(s) of a paragraph. (Default: 0)
• linebreak.hangAfter: An integer count of howmany lines should have linebreak.hangIndent

applied. (Default: nil)
• linebreak.adjdemerits: Additional demerits which are accumulated in the course of para-

graph building when two consecutive lines are visually incompatible. In these cases, one line
is built with much space for justification, and the other one with little space. (Default: 10000)

• linebreak.looseness: Howmany lines the current paragraph should bemade longer than nor-
mal. (Default: 0)

• linebreak.prevGraf: The number of lines in the paragraph last added to the vertical list.
• linebreak.emergencyStretch: Assumed extra stretchability in lines of a paragraph. (Default:

0)
• linebreak.linePenalty: Penalty value associated with each line break. (Default: 10)

4. That is, when characters are actually shaped, so that SILE knows their properties and metrics.

SILE Settings

80

• linebreak.hyphenPenalty: Penalty associated with break at a hyphen. (Default: 50)
• linebreak.doubleHyphenDemerits: Penalty for consecutive lines ending with a hyphen. (De-

fault: 10000)

7.4 Shaper settings
As well as the settings for varying word space (see above), there is one additional option which af-
fects the shaping of text.5 The default shaping engine, Harfbuzz, can actually call out to other shap-
ing engines instead of doing the shaping itself. SILE provides an interface (through the harfbuzz.

subshapers setting) to select the shaping engine in use. To get a list of the subshapers enabled in your
build of Harfbuzz, run sile --debug=versions on any file:

$ sile --debug=versions hello.sil
...
Harfbuzz version: 2.4.0
Shapers enabled: graphite2, ot, coretext, coretext_aat, fallback
...

If I wanted to test out the macOS CoreText shaper instead of using Graphite and Harfbuzz’s own
OpenType shaper, I could set:

\set[parameter=harfbuzz.subshapers,value=coretext]

This is one of those situations where for 99% of people it isn’t useful at all but the other 1% of
people will really appreciate it: specifically, if you are designing fonts with complex text layout and
you want to check how they will appear on different rendering systems. If that’s not you, don’t worry
about this setting; if it is, you’re welcome.

7.5 Settings from Lua
Most of the time you will not be fiddling with these settings at the SILE layer, because complex layout
commands are expected to be implemented in Lua. The following SILE functions access the settings
system from inside Lua:

• SILE.settings:set(⟨parameter⟩, ⟨value⟩): sets a setting.

You should note that, while in the SILE layer, the \set command does its best to turn the tex-
tual description of a type into the appropriate Lua type for the value. SILE.settings:set

5. Shaping is the process of selecting and positioning the glyphs from a font–turning the text that we type
into the boxes that SILE puts together on a line.

7.5 Settings from Lua

81

does not do that; it expects the value to be of the appropriate type: lengths need to be a
SILE.types.length object, glue must be SILE.types.node.glue and so on.

• SILE.settings:get(⟨parameter⟩): retrieves the current setting of the parameter.
• SILE.settings:temporarily(⟨function⟩): Saves all settings, runs the function and then re-

stores all settings afterwards.
• SILE.settings:declare(⟨specification⟩): Declares a new setting. See the base settings in
settings.lua for examples of how to call this. A class or package should namespace its settings
with ⟨package⟩.⟨setting⟩.

SILE Settings

82

Chapter 8
Multilingual Typesetting
One thing we’re pretty proud of is SILE’s language support. Typesetting conventions differ both from
script to script and from language to language. SILE aims to support quality typesetting across all
script and language families. As an open source project we can collaborate on support for locales that
commercial systems do not consider worthwhile. We want tomake it easy for minority languages and
scripts to implement their own typographic conventions.

8.1 Selecting languages
For SILE to know how to typeset text you will need to tell it what language your text is in! There are
two ways to do this: as part of the \font[language=⟨code⟩] command as detailed in Chapter 4, or by
use of the \language[main=⟨code⟩] command. Both of these expect an ISO639-1 language code such
as en for English, ar for Arabic, and so on.

Selecting a language by either method loads up the language support files for that language. These
in turn enable various localization and typesetting conventions. Language support may include:

• hyphenation patterns
• line breaking and justification schemes
• frame advance and writing direction
• spacing
• choice of glyphs within a font
• localization of programmatically inserted strings

For example, Sindhi and Urdu users will expect the Arabic letter heh (ه) to combine with other
letters in different ways to standard Arabic shaping. In those cases, you should ensure that you select
the appropriate language before processing the text:

Standard Arabic:
\font[family=LateefGR,language=ar]{ههه};
then in Sindi:
\font[family=LateefGR,language=snd]{ههه};
then in Urdu:
\font[family=LateefGR,language=urd]{ههه}.

Standard Arabic: ;ههه then in Sindi: ;ههه then in Urdu: .ههه

8.2 Direction
SILE is written to be direction-agnostic, which means that it has no fixed idea about which way text
should flow on a page. Latin scripts are generally written left-to-right with individual lines starting
from the top of the page and advancing towards the bottom. Japanese can be written in the same way,

but traditionally is typeset down the page with lines of text moving from the right of the page to the
left.

To describe this, SILE uses the concept of a writing direction,which denotes the way each individual
line appears on the page—left to right for Latin scripts, right to left for Arabic, Hebrew and so on, top to
bottom for traditional Japanese—and a page advance direction, which denotes the way the lines “stack
up”. Each of these directions can take one of four values: LTR, RTL, TTB, or BTT. A direction specification
is made up of either a writing direction (LTR or RTL), in which case the page advance direction is
understood to be TTB, or a writing direction and a page advance direction joined by a hyphen.

Each frame has its own writing direction. By default, this is LTR-TTB. Normally you would set the
writing direction once, in the master frames of your document class. One easy way to do this in the
plain document class is to pass the direction parameter to the \begin{document} command. For
example, Mongolian is written top to bottom with text lines moving from the left to the right of the
page, so to create a Mongolian document, use:

\begin[direction=TTB-LTR]{document}
\font[language=mo,family=Noto Sans Mongolian]
...
\end{document}

To change the writing direction for a single frame, use \thisframedirection[direction=⟨dir⟩].
SILE uses theUnicode bidirectional algorithm to handle texts written inmixed directionalities. See

https://sile-typesetter.org/examples/i18n.sil for an example which brings together multiple
scripts and directionalities.

8.3 Hyphenation
SILE hyphenates words based on its current language. (Language is set using the \font command
above.) SILE comes with support for hyphenating a wide variety of languages, and also aims to encode
specific typesetting knowledge about languages.

The default hyphen character is “-”, which can be tweaked by the \font parameter hyphenchar.
It accepts a Unicode character or Unicode codepoint in [Uu]+<code> or Hexadecimal 0[Xx]<code>
format—for instance, \font[family=Rachana, hyphenchar=U+200C, language=ml].

SILE comes with a special “language” called und, which has no hyphenation patterns available. If
you switch to this language, text will not be hyphenated. The command \nohyphenation{…} is pro-
vided as a shortcut for \font[language=und]{…}.

The hyphenator uses the same algorithm as TeX and can use TeX hyphenation pattern files if they
are converted to Lua format. To implement hyphenation for a new language, first check to see if TeX
hyphenation dictionaries are available; if not, work through the resources at http://tug.org/docs/
liang/.

Note on Unicode soft hyphens — By default, soft hyphens (U+00AD) are interpreted as discretionary
breaks, allowing line-breaking at that point (using the current font’s hyphen character).

Multilingual Typesetting

84

However, issues may arise when soft hyphens are used in ligatures, causing breaks between con-
stituent characters and disrupting the ligature’s integrity. Rather than relying on soft hyphens, for
instances requiring hyphenation in unknownwords, consider adding an exception to the hyphenation
rules instead, with \hyphenator:add-exceptions{⟨text⟩} (where the text is a lowercase representa-
tion of the word, with dashes where hyphenation is allowed).

Moreover, typists sometimes manually insert soft hyphens to rectify line-breaking issues in other
typesetting systems. In SILE, leveraging language-specific hyphenation rules tends to be more reli-
able. Setting typesetter.softHyphen to false ignores soft hyphens entirely in the text, alleviating
potential issues arising from their manual insertion.

Soft hyphens can be inadvertently inserted by text editors or software, remaining invisible in the
source text and causing unexpected output. Setting typesetter.softHyphenWarning to true triggers
warnings upon encountering soft hyphens, aiding users in identifying and rectifying such instances,
regardless of the previous setting.

8.4 Localization
A small handful of strings may be programmatically added to documents depending on language,
context, and options. For example by default in English the book class will prepend “Chapter ” before
chapter numbers output by the \chapter command. These localized strings are managed internally
using the Fluent localization system.1 Some default localizations are provided for a handful of lan-
guages, but it is quite likely SILE will not (yet) have your language. Even if it does, it may not use the
localization of your choice.

All default localizations can be easily overridden and new locales can easily be added in your doc-
ument or project. Additionally, the Fluent localization system is exposed and can be used for your
localization purposes.

To set a new value for amessage (ormessages), simply use the \ftl command. The contents passed
to the command will be parsed as new messages and loaded in the locale for the current document
language. Optionally, messages may be loaded into a different locale with \ftl[locale=<locale>].
You can also load messages from an external ftl file with \ftl[src=<filename>].

To output a localized message, pass the message ID to the \fluent command. The current docu-
ment languages determines the locale used, or a locale option may be passed. Fluent parameters may
also be passed as options.

For example a hello message is available in SILE, and in an English context such as this
manual \fluent[name=World]{hello} will output “Hello World!”. To get the localization in
Turkish, try \fluent[name=World,locale=tr]{hello} to get “Merhaba World!”. Now lets change

1. See Project Fluent (https://projectfluent.org) for details on the data format and uses.

8.4 Localization

85

the message with \ftl[locale=tr]{hello = Selam { $name }!} and try again. This time
\fluent[name=Dünyalılar,locale=tr]{hello} will output “Selam Dünyalılar!”.

A particularly common string to override might be the table of contents heading:

\ftl{tableofcontents-title = Table of Contents}
\tableofcontents

8.5 Support for specific languages
The following section shows some of the support features that SILE provides for specific languages
apart from hyphenation and language-specific glyph selection:

8.5.1 Amharic

SILE inserts word break opportunities after Ethiopic word spaces and full stops. Amharic can be type-
set in two styles: with space surrounding punctuation or space after punctuation. You can set the
setting languages.am.justification to either left or centered to control which style is used. The
default is left.

\font[family=Noto Sans Ethiopic,language=am]
ሰላም፡ልዑል
\set[parameter=languages.am.justification,value=centered]
ሰላም፡ልዑል

ሰላም፡ ልዑል

ሰላም ፡ ልዑል

8.5.2 Croatian

According to Croatian typography conventions, when a break occurs at an explicit hyphen, the hy-
phen gets repeated at the beginning of the new line. SILE automatically handles this.

8.5.3 Czech

According to Czech typography conventions, when a break occurs at an explicit hyphen, the hyphen
gets repeated at the beginning of the new line. SILE automatically handles this.

8.5.4 Esperanto

2. Wikipedia prefers “15-a” while most professional books and posters prefer “15ª”. Some authors even write
“15a”, as the underlying word is “dekkvina”.

Multilingual Typesetting

86

Esperanto typesetting is quite straight forward; however one feature of the language is unique: the
requirement that all adjectives, including numerals, have the suffix “ª”. This includes numbers stand-
ing on their own. For example, “the 15th of March” is, in Esperanto, “la 15ª de marto”. As there is lack
of agreement2 on how to typeset this, you have options: languages.eo.ordinal.raisedsuffix when
made true will use ª (as in “Ĉapitro 1ª”) while languages.eo.ordinal.hyphenbefore will prepend a
hyphen (as in “Ĉapitro 15-a”).

8.5.5 French

In French typesetting, there is normally a non-breakable space between text and “high” punctua-
tion (a thin fixed space before question marks, exclamation marks, and semicolons, and an inter-
word space before colons), and also spaces within “guillemets” (quotation marks). SILE will automat-
ically apply the correct space. The size of these spaces is determined by languages.fr.thinspace,
languages.fr.colonspace and languages.fr.guillspace.

8.5.6 Polish

According to Polish typography conventions, when a break occurs at an explicit hyphen, the hyphen
gets repeated at the beginning of the new line. SILE automatically handles this.

8.5.7 Portuguese

According to Portuguese typography conventions, when a break occurs at an explicit hyphen, the
hyphen gets repeated at the beginning of the new line. SILE automatically handles this.

8.5.8 Slovak

According to Slovak typography conventions, when a break occurs at an explicit hyphen, the hyphen
gets repeated at the beginning of the new line. SILE automatically handles this.

8.5.9 Spanish

According to Spanish typography conventions, when a break occurs at an explicit hyphen, the hyphen
gets repeated at the beginning of the new line. SILE automatically handles this.

8.5.10 Turkish

According to Turkish typography conventions, when a break occurs at an existing apostrophe,
the break point is allowed but no hyphenation character is shown. SILE behaves this way
default. Some publisher style guides suggest an alternative behavior replacing the apostrophe
with the hyphenation character. This alternative behavior can be achieved by setting
languages.tr.replaceApostropheAtHyphenation to true.

8.5.11 Japanese / Chinese

8.5 Support for specific languages

87

SILE aims to conform with the W3G document “Requirements for Japanese Text Layout”3 which de-
scribes the typographic conventions for Japanese (and also Chinese) text. Breaking rules (kinzoku shori)
and intercharacter spacing is fully supported on selecting the Japanese language. The easiest way
to set up the other elements of Japanese typesetting such as the hanmen grid and optional vertical
typesetting support is by using the jplain or jbook classes. For other languages with similar layout
requirements, more generic tplain and tbook classes are available that setup the layout elements
without also setting the default language and font to Japanese specific values. These are also good
candidates to use as base classes and extend for more language-specific classes.

Japanese documents are traditionally typeset on a grid layout called a hanmen, with each character
essentially monospaced inside the grid (like writing on graph paper). The hanmenkyoshi package
provides tools to Japanese class designers for creating hanmen frames with correctly spaced grids. It
also provides the \show-hanmen command for debugging the grid.

The name hanmenkyoshi is a terrible pun.
The tate package provides support for Japanese vertical typesetting. It allows for the definition

of vertical-oriented frames, as well as for two specific typesetting techniques required in vertical
documents: \latin-in-tate typesets its content as Latin text rotated 90 degrees, and \tate-chu-yoko
places (Latin) text horizontally within a single grid-square of the vertical hanmen.

Japanese texts often contain pronunciation hints (called furigana) for difficult kanji or foreign
words. These hints are traditionally placed either above (in horizontal typesetting) or beside (in ver-
tical typesetting) the word that they explain. The typesetting term for these glosses is ruby.

The ruby package provides the \ruby[reading=⟨ruby text⟩]{⟨base text⟩} commandwhich sets
a piece of ruby above or beside the base text. For example:

\ruby[reading=れいわ]{令和}

Produces:
れいわ
令和

8.5.12 Syllabic languages

SILE implements syllable-based line breaking for Burmese and Javanese text.

8.5.13 Uyghur

Uyghur is the only Arabic script based language which uses hyphenation, and SILE supports hyphen-
ation. Because Arabic fonts aren’t normally designed with hyphenation in mind, you may need to
tweak some settings to ensure that Uyghur is typeset correctly. As well as choosing the hyphenchar

3. https://www.w3.org/TR/jlreq/

Multilingual Typesetting

88

(see the hyphenation section above), the setting languages.ug.hyphenoffset inserts a space between
the text and the hyphen.

8.5 Support for specific languages

89

Chapter 9
The Nitty Gritty
We are finally at the bottom of our delve into SILE’s commands and settings. Here are the basic build-
ing blocks out of which all of the other operations in SILE are created.

At this point, it is expected that you are a class or package designer, and will be able to follow the details
of how SILE implements these commands and features; we will also explain how to interact with these
components at the Lua level.

9.1 Measurements and lengths
Before dabbling into more advanced topics, let’s introduce “measurements” and “lengths” in SILE,
the two available Lua constructs for representing dimensions.

Measurements are specified in terms of SILE.types.measurement objects. It is a basic construct
with an amount and a unit. Let us illustrate two commonways for creating such an object in Lua (from
a string, with same syntax as in command parameters; or from a Lua table).

local m1 = SILE.types.measurement("10pt")
local m2 = SILE.types.measurement({ amount = 10, unit = "pt" })

SILE also provides a more advanced construct specified in terms of SILE.types.length objects;
these are “three-dimensional” dimensions, in that they consist in a base measurement plus stretch
and shrink measurements. They are therefore composed of three SILE.types.measurement.

local l1 = SILE.types.length("10pt plus 2pt minus 1pt")
local l2 = SILE.types.length({ length = "1Opt", stretch = "2pt", shrink = "1pt" })

Both of these are used for various purposes. In many cases, they are nearly interchangeable. Cast-
ing from one to the other is straightforward: casting a length to a measurement returns just the base
measurement and discards the stretch and shrink properties; casting a measurement to a length sets
its stretch and shrink properties to zero.

local l3 = SILE.types.length(SILE.types.measurement("10pt")) -- 10pt, without stretch and shrink
local m3 = SILE.types.measurement(SILE.types.length("10pt plus 2pt minus 1pt")) -- 10pt

Proper casting is important, for your code to remain portable across the various versions of the
Lua language.

9.2 Boxes, glue, and penalties

SILE’s job, looking at it in very abstract terms, is all about arranging little boxes on a page. Some of
those boxes have letters in them, and those letters are such-and-such a number of points wide and
such-and-such a number of points high; some of the boxes are empty but are there just to take up
space. When a horizontal row of boxes has been decided (i.e., when a line break is determined) then
the whole row of boxes is put into another box and the vertical list of boxes are then arranged to form
a page.

Conceptually, then, SILE knows about a few different basic components:
• Horizontal boxes (such as a letter)
• Horizontal glue (such as the stretchable or shrinkable space between words)
• Vertical boxes (typically, a line of text)
• Vertical glue (such as the space between lines and paragraphs)
• Penalties (information about where and when not to break lines and pages)

Additionally, horizontal boxes are further specialized.1

• Discretionaries (special construct used when a word is hyphenated)
• N-nodes and unshaped nodes (text content shaped according to a certain font, or not yet

shaped and measured)
• Migrating boxes (such as foonote content)

Themost immediately useful of these are horizontal and vertical glue. Horizontal and vertical glue
can be explicitly added into SILE‘s processing stream using the \glue and \skip commands. These
take a width and a height parameter, respectively, both of which are glue dimensions. For instance,
the \smallskip command is the equivalent of \skip[height=3pt plus 1pt minus 1pt]; \thinspace
is defined as being \glue[width=0.16667em].

Similarly, there is a \penalty command for inserting penalty nodes; \break is defined as
\penalty[penalty=-10000] and \nobreak is \penalty[penalty=10000].

You can also create horizontal and vertical boxes from within SILE. One reason for doing so would
be to explicitly avoid material being broken up by a page or line break; another reason for doing so
would be that once you box some material up, you then know how wide or tall it is. The \hbox and
\vbox commands put their contents into a box.

At a Lua coding level, SILE’s Lua interface contains a types.node for creating boxes and glue. Here
is one way (among others) for you to construct horizontal and vertical glue:

local glue = SILE.types.node.glue({ width = l })
local vglue = SILE.types.node.vglue({ height = l })

1. The math support in SILE also defines additional types of boxes, not discussed here.

The Nitty Gritty

92

9.3 Kerns
\kern’s are a type of \glue, only different in that while a \glue can be broken at the end of a line,
a \kern can’t. Hearkening back to our SIL example from the Macros and Commands chapter, consider
that example, repeated enough times to cause a linebreak, but with \glue’s everywhere \kern’s are
used instead:

SIL SIL
SIL SIL
SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL
Note end of lines where SIL is broken between its ‘L’ and ‘ ’. Instead, if we typeset the same line

using \kern’s as we had originally:
SIL SIL
The line just continues on right off the page. Why this is a useful feature is more obvious if there

are spaces between them:
Glues:

SIL SIL
SIL SIL
SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL

Kerns:

SIL SIL
SIL SIL
SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL SIL

9.4 The typesetter
SILE’s typesetting is organized by the SILE.typesetter object. It maintains two queues of material
that it is still working on: the node queue and the output queue. Material in these queues is content
that has been parsed but not yet rendered to the canvas and can still be manipulated. The node queue
(SILE.typesetter.state.nodes) contains new horizontal boxes and glue that have not yet been bro-
ken up into lines. The output queue (SILE.typesetter.state.outputQueue) consists of vertical ma-
terial (lines) which have not yet been broken up into pages. Line breaking and page breaking happen
when the typesetter moves between horizontal and vertical mode.

As new content is parsed it is added to the node queue in as small chunks as possible. These chunks
must remain together no matter where they end up on a line. This might include individual symbols,
syllables, or objects such as images. As soon as new content which requires a vertical break is encoun-
tered, the node queue is processed to derive any missing shaping information about each node, then
the sequence of node is broken up into lines. Once all the “horizontal mode” nodes are broken into
lines and those lines are added to the output queue, the other new vertical content can be processed.
At any point you can force the current queue of horizontal content (the node queue) to be shaped into

9.4 The typesetter

93

lines and added to the vertical output queue by calling the function SILE.typesetter:leaveHmode().
When writing a custom command, if you want to manually add a vertical space to the output, first

ensure that the material in the current paragraph has been all properly boxed-up and moved onto
the output queue by calling SILE.typesetter:leaveHmode(), then add your desired glue to the output
queue. This is exactly what the \skip and similar commands do.

Itmight be a goodpoint to better explain here the actual difference between just leavinghorizontal
mode, and the related, but higher level, \par command. The latter is more frequently used when
writing a document. It first calls SILE.typesetter:leaveHmode(), but then also inserts a vertical skip
according to the document.parskip setting, and goes on to reset a number of settings that are typically
paragraph-related such as hanging indents. When designing you own commands, there are therefore
some cases when you may just need to call SILE.typesetter:leaveHmode() and handle everything
else in your own code; and situations when invoking SILE.call("par") might be more adequate,
resulting in an effective paragraph to be terminated.

Adding boxes and glue to the typesetter’s queues is such a common operation that the typesetter
has some utility methods to construct the nodes and add them for you:

SILE.typesetter:leaveHmode()
SILE.typesetter:pushVglue({ height = l })

Adding boxes yourself is a little more complicated, because boxes need to know how to display
themselves on the page. To facilitate this, they normally store a value and an outputYourselfmember
function. For instance, the image package does something very simple: it adds a horizontal box to
the node queue which knows the width and height of the image, the source, and instructions to the
output engine to display the image:

SILE.typesetter:pushHbox({
width= …,
height= …,
depth= 0,
value= options.src,
outputYourself= function (this, typesetter, line)
SILE.outputter.drawImage(this.value,

typesetter.frame.state.cursorX, typesetter.frame.state.cursorY-this.height,
this.width,this.height

);
typesetter.frame:advanceWritingDirection(this.width)

end});

Adding horizontal and vertical penalties to the typesetter’s queues is similarly done with the
SILE.typesetter:pushPenalty({penalty = x}) and SILE.typesetter:pushVpenalty({penalty =

y}) methods.

9.5 Frames
As we have previously mentioned, SILE arranges text into frames on the page. The overall layout of a

The Nitty Gritty

94

page, including the apparent margins between content and the page edge and other content regions,
is controlled by defining the position of the frame or frames into which the content will be flowed.

Normally those frames are defined by your document class, but you can actually create your own
frames on a per-page basis using the \pagetemplate and \frame commands. There are very few sit-
uations in which you will actually want to do this, but if you can understand this, it will help you to
understand how to define your own document classes.

For instance, in a couple of page’s time, we’re going to implement a two-column layout. SILE uses
a constraint solver system to declare its frames, which means that you can tell it how the frames relate
to each other and it will compute where the frames should be physically placed on the page.

Here is howwewill go about it. We need to start with a page break, because SILEwill not appreciate
you changing the page layout after it’s started to determine how to put text onto that page.2 How do
we get to the start of a new page? Remember that the \eject (another word for \break in vertical
mode) only adds a penalty to the end of the output queue; page breaking is triggered when we leave
horizontal mode, and the way to do that is \par. So we start with \eject\par and then we will begin
a \pagetemplate. Within \pagetemplate we need to tell SILE which frame to begin typesetting onto:

\eject\par
\begin[first-content-frame=leftCol]{pagetemplate}

Now we will declare our columns. But we’re actually going to start by declaring the gutter first,
because that’s something that we know and can define; we’re going to stipulate that the gutter width
will be 3% of the page width:

\frame[id=gutter,width=3%pw]

Declarations of frame dimensions are like ordinary SILE <dimension>s, except with three additional
features:

• You can refer to properties of other frames using the top(), bottom(), left(), right(),
height() and width() functions. These functions take a frame ID. SILE pre-defines the frame
page to allow you to access the dimensions of the whole page.

• You can use arithmetic functions: plus, minus, divide, multiply, and parentheses symbols have
their ordinary arithmetic meaning. To declare that frame b should be half the height of frame a
plus 5 millimeters, you can say height=5mm + (height(b) / 2). However, as we will see later,
it is usually better to structure your declarations to let SILE make those kind of computations for

2. You can use the frametricks package to get around this limitation—split the current frame and start
fiddling around with the positions of the new frames that frametricks created for you.

9.5 Frames

95

you.
• Since book design is often specified in terms of proportion of a page, you can use the shortcut
width=5%pw instead of width=0.05 * width(page) and height=50%ph instead of height=0.5
* height(page).

Next we declare the left and right column frames. The book class gives us some frames already,
one of which, content, defines a typeblock with a decent size and positioning on the page. We will
use the boundaries of this frame to declare our columns: the left margin of the left column is the left
margin of the typeblock, and the rightmargin of the right column is the rightmargin of the typeblock.
But we also want a few other parameters to ensure that:

• the gutter is placed between our two columns
• the two columns have the same width (we don’t know what that width is, but SILE will work it

out for us)
• after the left column is full, typesetting should move to the right column

\frame[id=leftCol, left=left(content), right=left(gutter),
top=top(content), bottom=bottom(content),
next=rightCol]

\frame[id=rightCol, left=right(gutter), right=right(content),
top=top(content), bottom=bottom(content),
width=width(leftCol)]

And now finally we can end our pagetemplate.

\end{pagetemplate}

Let’s do it.

The Nitty Gritty

96

leftCol rightCol
So there we have it: a two-column page lay-

out.
In the next chapter we’ll use the knowledge

of how to declare frames to help us to create our
own document class files. In the meantime, here
is some dummy text to demonstrate the fact that
text does indeed flow between the two columns
naturally:

lorem ipsum dolor sit amet consetetur sadip-
scing elitr sed diam nonumy eirmod tempor in-
vidunt ut labore et dolore magna aliquyam erat
sed diam voluptua at vero eos et accusam et justo
duo dolores et ea rebum stet clita kasd gubergren
no sea takimata sanctus est lorem ipsumdolor sit
amet lorem ipsum dolor sit amet consetetur sa-
dipscing elitr sed diam nonumy eirmod tempor
invidunt ut labore et doloremagna aliquyamerat
sed diam voluptua at vero eos et accusam et justo
duo dolores et ea rebum stet clita kasd gubergren
no sea takimata sanctus est lorem ipsum dolor
sit amet lorem ipsum dolor sit amet consetetur
sadipscing elitr sed diam nonumy eirmod tem-
por invidunt ut labore et dolore magna aliquyam
erat sed diam voluptua at vero eos et accusam et
justo duo dolores et ea rebum stet clita kasd gu-
bergren no sea takimata sanctus est lorem ipsum
dolor sit amet

duis autem vel eum iriure dolor in hendrerit
in vulputate velit esse molestie consequat vel il-
lum dolore eu feugiat nulla facilisis at vero eros
et accumsan et iusto odio dignissim qui blandit
praesent luptatum zzril delenit augue duis do-
lore te feugait nulla facilisi lorem ipsum dolor sit
amet consectetuer adipiscing elit sed diam no-
nummynibh euismod tincidunt ut laoreet dolore
magna aliquam erat volutpat

ut wisi enim ad minim veniam quis nostrud
exerci tation ullamcorper suscipit lobortis nisl ut
aliquip ex ea commodo consequat duis autem vel
eum iriure dolor in hendrerit in vulputate velit

esse molestie consequat vel illum dolore eu feu-
giat nulla facilisis at vero eros et accumsan et iu-
sto odio dignissim qui blandit praesent luptatum
zzril delenit augue duis dolore te feugait nulla fa-
cilisi

nam liber tempor cum soluta nobis eleifend
option congue nihil imperdiet doming id quod
mazim placerat facer possim assum lorem ipsum
dolor sit amet consectetuer adipiscing elit sed
diam nonummy nibh euismod tincidunt ut lao-
reet dolore magna aliquam erat volutpat ut wisi
enim ad minim veniam quis nostrud exerci ta-
tion ullamcorper suscipit lobortis nisl ut aliquip
ex ea commodo consequat

duis autem vel eum iriure dolor in hendrerit
in vulputate velit esse molestie consequat vel il-
lum dolore eu feugiat nulla facilisis

at vero eos et accusam et justo duo dolores
et ea rebum stet clita kasd gubergren no sea
takimata sanctus est lorem ipsum dolor sit amet
lorem ipsum dolor sit amet consetetur sadip-
scing elitr sed diam nonumy eirmod tempor
invidunt ut labore et dolore magna aliquyam
erat sed diam voluptua at vero eos et accusam
et justo duo dolores et ea rebum stet clita kasd
gubergren no sea takimata sanctus est lorem
ipsum dolor sit amet lorem ipsum dolor sit amet
consetetur sadipscing elitr at accusam aliquyam
diam diam dolore dolores duo eirmod eos erat et
nonumy sed tempor et et invidunt justo labore
stet clita ea et gubergren kasd magna no rebum
sanctus sea sed takimata ut vero voluptua est
lorem ipsum dolor sit amet lorem ipsum dolor
sit amet consetetur sadipscing elitr sed diam
nonumy eirmod tempor invidunt ut labore

9.5 Frames

97

Chapter 10
Designing Packages & Classes
This chapter describes how to implement your own add-on packages and classes in the Lua program-
ming language, for you to extend the way that the SILE system operates, define new commands and
page layouts, or indeed do anything that is possible to do in Lua.

The default formatting in SILE documents is usually determined by the class used by that docu-
ment. This default look can be changed, andmore functionalities can be added bymeans of a package.
Sometimes it’s hard to make a decision when it comes to choose whether to write a package or a class,
and the difference may seem subtle. The basic rule is that if your file contains commands that control
the look of the logical structure of a given type of document, then it’s a class. Otherwise, if your file
adds features that are independent of the document type, then it’s rather a package.1

SILE relies on the Penlight Object-Oriented Programming (OOP) framework.Many components are
therefore implemented as Penlight classes (here, in the usual OOP sense). Their use below is straight-
forward and is expected to be covered by examples, but you might also want to read more about it
before you start.2

10.1 Designing a package
Packages live somewhere in the packages/ subdirectory of either where your first input file is located,
your current working directory, or your SILE path.

1. Obviously there’s nothing new here for seasoned (La)TeX users, but there’s no harm either stating it for a
more general audience.
2. See https://lunarmodules.github.io/Penlight/libraries/pl.class.html
3. Programmers will recognize the delegation over inheritance paradigm here. If you intend to develop a
complete family of packages sharing several common methods, then of course you might be interested in first
implementing all of these in a parent package, that your other packages will inherit.

https://lunarmodules.github.io/Penlight/libraries/pl.class.html

10.1.1 Implementing a bare package

A minimum working package inherits from the base package. While it is possible to inherit from
another existing package, let’s ignore this advanced use case in this primer.3

We need to declare the name of our new package, override the package’s initialization method
(that is, its class constructor) and possibly other methods as well, set a documentation string, and
finally return our new package.

While its presence is not mandatory, the documentation string usually comes in the form of an
embedded SIL document, explaining the purpose of the package and possibly illustrating some of its
features. It is extracted by the autodoc package for presenting the package in a manual such as this
one. We recommend writing it, when you feel ready to share your package with other users.

Also note that the package’s initialization methods accepts an options table. It allows passing
parameters when loading and instantiating that package. This is already a somewhat advance use case
too, and we are not going to cover it here.

This being said, let’s proceed as mentioned, and simply create a file packages/mypkg/init.lua

with the following content.

local base = require("packages.base")
local package = pl.class(base)
package._name = "mypkg"
function package:_init (options)
-- Things you might want to do before the parent initialization.
base._init(self)
-- Things you might want to do after the parent initialization.

end
-- Additional methods will later come here.
package.documentation = [[
\begin{document}
...
\end{document}
]]
return package

You have just written you very first package, and you can already use it in a document (for in-
stance, loading it with \use[module=packages.mypkg])… Although this package doesn’t do anything
interesting yet.

10.1.2 Defining commands

To define your own command at the Lua level, you overload the registerCommands package method.

function package:registerCommands ()
-- Our own commands come here

end

Within it, use the self:registerCommand function. It takes three parameters: a command name, a
function to implement the command, and some help text.

The signature of a function representing a SILE command is fixed: youneed to take twoparameters,

Designing Packages & Classes

100

options and content.4 Both of these parameters are Lua tables. The options parameter contains the
command’s parameters as a key-value table, and the content parameter is an abstract syntax tree
reflecting the input being currently processed.

So in the case of \mycommand[size=12pt]{Hello \break world}, the first parameter will contain
the table {size = "12pt"} and the second parameter will contain the table:

{
"Hello ",
{
options = {},
id = "command",
pos = …,
col = …,
lno = …,
command = "break"

},
" world"

}

Most commands will find themselves doing something with the options and/or calling
SILE.process(content) to recursively process and render the argument.

Here’s a very simple example: a \link command may take an href attribute. We want to render
\link[href=http://...]{Hello} as Hello (http://...). First we need to render the content, and
thenweneed to do somethingwith the attribute.Weuse the SILE.typesetter:typeset and SILE.call
functions to output text and call other commands.

self:registerCommand("link", function(options, content)
SILE.process(content)
if (options.href) then

SILE.typesetter:typeset(" (")
SILE.call("code", {}, { options.href })
SILE.typesetter:typeset(")")

end
end)

Now, let’s (re-)design a blockquote environment implementing indented (and possibly nested)
quotations. You do remember, right, that an environment in SILE is not much different from a com-
mand? So a command be it, without any option this time, but playing with vertical skip, measure-
ments, glue, (temporary) left and right margin settings. (If these concepts elude you, consider re-
reading the previous chapters where they are introduced.)

self:registerCommand("blockquote", function (_, content)
SILE.call("smallskip")
SILE.settings:temporarily(function ()

local indent = SILE.types.measurement("2em"):absolute()
local lskip = SILE.settings:get("document.lskip") or SILE.types.node.glue()

4. Of course ou can name your parameters whatever you like, but these are the most common names.

101

local rskip = SILE.settings:get("document.rskip") or SILE.types.node.glue()
SILE.settings:set("document.lskip",
SILE.types.node.glue(lskip.width + indent))

SILE.settings:set("document.rskip",
SILE.types.node.glue(rskip.width + indent))

SILE.process(content)
SILE.typesetter:leaveHmode() -- gather paragraphs now.

end)
SILE.call("smallskip")

end, "A blockquote environment")

10.1.3 Defining settings

To define your own settings at the Lua level, you overload the declareSettings package method; and
within it, use the SILE.settings:declare function. It takes a setting specification as argument.

In our custom quotation environment above, note that we hard-coded the indentation. Say you’d
prefer allowing users to specify their preferred value here. You would have more than one way to
achieve it. A command option is one of them, but you’d be right in thinking that a SILE setting might
bemore user-friendly and appropriate in this very case, so one could for instance do \set[parameter=
mypkg.blockindent, value=2em] to configure it globally (or within a given scope). Let’s do this.
Change the line setting the indentation in your custom command…

local indent = SILE.settings:get("mypkg.blockindent"):absolute()

… and declare the corresponding setting:

function package:declareSettings ()
SILE.settings:declare({
parameter = "mypkg.blockindent",
type = "measurement",
default = SILE.types.measurement("2em"),
help = "Blockquote indentation"

})
end

10.1.4 Defining raw handlers

“Raw handlers” allow packages to register new handlers (or callbacks) for use with the raw environ-
ment, which content is read as-is by SILE, without being interpreted. This is intended for advanced
use cases where youmaywant to provide away for users to embed arbitrary content (likely in another
syntax), and you will provide the complete parsing and handling for it.5

5. Thismay be used to implement a “clever” verbatim environment. It is also used, for instance, by themark-
down.sile 3rd-party collection to embed Markdown or Djot content directly in a (SIL or XML) document.

Designing Packages & Classes

102

You candefine your own rawhandlers at the Lua level. Overload the registerRawHandlerspackage
method; and within it, use the self:registerRawHandler function. It takes two parameters: a handler
type name, and a function to implement the handler. The signature of the handler function is the
same as for a SILE command.

Here is a handler that just typesets the content as-is, for you to just get the idea.

function package:registerRawHandlers ()
self:registerRawHandler("mypkg:noop", function(options, content)
-- contains everything within the raw environment as unparsed text.
local text = content[1]
SILE.typesetter:typeset(text)

end)
end

10.1.5 Loading other packages

Above, when introducing the _init method, we left a few placeholder comments. Let’s say you want
to ensure the color package is also loaded, so that the custom \link command you implemented can
safely invoke it in a SILE.call.

function package:_init ()
base._init(self)
-- Load some dependencies
self:loadPackage("color")

end

The self:loadPackage methods takes as argument a package name, and optionally packages op-
tions (as a table).

10.1.6 Registering class hooks

Somepackagesmayprovide additional functions that need to be automatically called at various points
in the output routine of the document class. But let’s return to that topic later, when describing how
to set up you own custom class. For now, we can conclude our primer on packages, as you should
already have all the tools to design great packages.

10.2 Designing a document class
Document classes live somewhere in the classes/ subdirectory of either where your input file is
located, your current working directory, or your SILE path.

10.2.1 Implementing a bare class

A minimum working class inherits from the base class. Most of the time, however, you will prefer
inheriting at least from the plain class, which already provides a lot of things users will expect, in-

10.2 Designing a document class

103

cluding most of the basic commands presented early in this manual. Let’s assume this is the case, and
simply create a file classes/myclass.lua with the following content.

local plain = require("classes.plain")
local class = pl.class(plain)
class._name = "myclass"
function class:_init (options)
-- your stuff here (if you want it before the parent init)
plain._init(self, options) -- Note: passing options
-- your stuff here (if you want it after the parent init)

end
-- Additional methods will later come here.
return class

Note that it is very similar to what we previously did when designing a package.
A notable difference is that options always need to be propagated to the parent in the initialization

method. Not only can your document class implement its own additional options, you indeed also
want standard options to be honored, such as the paper size, etc. In other methods that we will later
override, we will also invoke the corresponding parent method, for it also to do its own things.

That’s it. You have implemented a working bare bones class. The next step is to start adding or
overriding class functions to do what you want.

10.2.2 Defining commands, settings, etc.

A document class can define commands, declare settings, register raw handlers and load additional
packages at initialization.

For all of these, the logic is exactly the same as for packages, so we are not repeating it here.

10.2.3 Defining class options

Your document class can also define specific options. To define your own class option, you overload
the declareOptions class method; and within it, use the self:declareOption function. It takes two
arguments, an option name and a function. The latter acts as a setter or getter, so a minimal code will
usually look as follows.

function class:declareOptions ()
base.declareOptions(self) -- Note: support parent class options
self:declareOption("myoption", function (_, value)
if value then

self.myoption = value
-- Possibly perform other processing when the value is set.

end
return self.myoption

end)
end

Would you also want this option to have a default value, then overload the setOptions method.
In that case, do not forget invoking the superclass method, so that its own options are also properly
initialized.

Designing Packages & Classes

104

function class:setOptions (options)
options.myoption = options.myoption or "default"
base.setOptions(self, options) -- Note: set parent options

end

10.2.4 Changing the default page layout

We earlier learned how to define a frame layout for a single page, let’s try to define one for an entire
document. We’re going to create a simple class file which merely changes the size of the margins and
the typeblock. We’ll call it bringhurst.lua, because it replicates the layout of the Hartley & Marks
edition of Robert Bringhurst’s The Elements of Typographical Style.

We are designing a book-like class, and so we will inherit from SILE’s standard book class found in
classes/book.lua. Let’s briefly have a look at book.lua to see how it works.6 First, a table is populated
with a description of the default frameset.

book.defaultFrameset = {
content = {
left = "8.3%pw",
right = "86%pw",
top = "11.6%ph",
bottom = "top(footnotes)"

},
folio = {
left = "left(content)",
right = "right(content)",
top = "bottom(footnotes)+3%ph",
bottom = "bottom(footnotes)+5%ph"

},
runningHead = {
left = "left(content)",
right = "right(content)",
top = "top(content)-8%ph",
bottom = "top(content)-3%ph"

},
footnotes = {
left = "left(content)",
right = "right(content)",
height = "0",
bottom = "83.3%ph"

}
}

So there are four frames directly declared. The first is the content frame, which by SILE convention
is called content. Directly abutting the content frame at the bottom is the footnotes frame. The top

6. Note that the official SILE classes have some extra tooling to handle legacy class models trying to inherit
from them. You don’t need those deprecation shims in your own classes when following these examples.

10.2 Designing a document class

105

of the typeblock and the bottom of the footnote frame have fixed positions, but the boundary between
typeblock and footnote is variable. Initially the height of the footnotes is zero (and so the typeblock
takes up the full height of the page) but as footnotes are inserted into the footnote frame its height
will be adjusted; its bottom is fixed and therefore its top will be adjusted, and the bottom of the main
typeblock framewill also be correspondingly adjusted. The folio frame (which holds the page number)
lives below the footnotes, and the running headers live above the content frame.

Normally, as in the plain class and anything inheriting from it, this would be enough to populate
the pages’ frameset. Instead the book class includes its own extension to the class with a callback
_init() function which loads themasters package and generates amaster frameset using the default
frameset defined above.

function book:_init (options)
self:loadPackage("masters")
self:defineMaster({
id = "right",
firstContentFrame = self.firstContentFrame,
frames = self.defaultFrameset
})...

plain._init(self, options)
return self

end

Next, we use the twoside package to mirror our right-page master into a left-page master:

self:loadPackage("twoside", { oddPageMaster = "right", evenPageMaster = "left" })
self:mirrorMaster("right", "left")

The book class also loads the table of contents packagewhich sets up commands for sectioning,and
declares various things that need to be done at the start and end of each page. Since we will be inher-
iting from the book class, we will have all these definitions already available to us. All we need to do is
set up our new class, and then define what is different about it. Here is how we set up the inheritance:

local book = require("classes.book")
local bringhurst = pl.class(book)
bringhurst._name = "bringhurst"
...
return bringhurst

Now we need to define our frame masters.
The LaTeX memoir classes’ A Few Notes On Book Design tells us that Bringhurst’s book has a spine

margin one thirteenth of the page width, a top margin eight-fifths of the spine margin, and a front
margin and bottom margin both sixteen-fifths of the spine margin. We can define this in SILE terms
like so:

bringhurst.defaultFrameset = {
content = {
left = "width(page) / 13",
top = "width(page) / 8",
right = "width(page) * .75",
bottom = "top(footnotes)"

Designing Packages & Classes

106

},
folio = book.defaultFrameset.folio,
runningHead = {
left = "left(content)",
right = "right(content)",
top = "top(content) / 2",
bottom = "top(content) * .75"

},
footnotes = book.defaultFrameset.footnotes

}

Note that we’ve deliberately copied the frame definitions for the folio and footnote frames from
the book class, but if we had tried to reuse the runningHead frame definition it would have been too
high because the typeblock is higher on the page than the standard book class, and the running heads
are defined relative to them. So, we needed to change the definition the running header frame to
bring them down a bit lower.

If all we want to do in our new class is to create a different page shape, this is all we need. The
_init() function inherited from book class will take care of setting these frames up with mirrored
masters.

If we had wanted to load additional packages into our class as, say, the bible class does, we would
need to define our own _init() function and call our parent class’s _init() function as well. For
example to load the infonode package into our class, we could add this function:

function bringhurst:_init(options)
book._init(self, options)
self:loadPackage("infonode")
return self

end

10.2.5 Modifying class output routines

As well as defining frames and packages, classes may also alter the way that SILE performs its output
—for instance, what it should do at the start or end of a page, which controls things like swapping
between different master frames, displaying page numbers, and so on.

The key methods for defining the output routine are:
• newPar and endPar are called at the start and end of each paragraph.
• newPage and endPage are called at the start and end of each page.
• finish is called at the end of the document.

Once again this is done in an object-oriented way, with derived classes overriding their superclass’
methods where necessary.

10.2.6 Interacting with class hooks

Some packages may provide functions that need to be run as part of the class output routines. They
can accomplish this is by registering hook functions that get run at known locations in the provided

10.2 Designing a document class

107

classes. In the default implementation, three hooks are provided:7

• The newpage hook is run at the start of each page.
• The endpage hook is run at the end of each page.
• The finish hook is called at the end of the document.

For an example, we will check out the tableofcontents package for the hooks it sets, but also
the \tocentry command it registers that gets called manually in the book class. Let’s demonstrate
roughly how the that package works. We’ll be using the infonode package to collect the information
about which pages contain table of content items.

First, we set up our infonodes by creating a command that can be called by sectioning commands.
In other words, \chapter, \section, etc., should call \tocentry to store the page reference for this
section.

self:registerCommand("tocentry", function (options, content)
-- (Simplified from the actual implementation.)
SILE.call("info", {
category = "toc",
value = {

label = SU.ast.stripContentPos(content), level = (options.level or 1)
}

})
end)

Infonodes work on a per-page basis, so if we want to save them throughout the whole document,
at the end of each page we need to move them from the per-page table to our own table. In order to
be useful, we also need to make sure we store their page numbers.

SILE provides the SILE.scratch variable for you to store global information in. You should use a portion
of this table namespaced to your class or package.

Here is a routine we can call at the end of each page to move the TOC nodes:

SILE.scratch.tableofcontents = { }
-- Gather the tocentries into a big document-wide TOC
function package:moveTocNodes ()
local node = SILE.scratch.info.thispage.toc
if node then
for i = 1, #node do

node[i].pageno = self.packages.counters:formatCounter(SILE.scratch.counters.folio)
table.insert(SILE.scratch.tableofcontents, node[i])

7. We will not cover it here, but class authors may also provide their own hook locations for packages, or run
any set of registered hooks in their own outputs.

Designing Packages & Classes

108

end
end

end

We’re going to take the LaTeX approach of storing these items as a separate file, then load-
ing them back in again when typesetting the TOC. So at the end of the document, we serialize the
SILE.scratch.tableofcontents table to disk. Here is a function to be called by the finish output
routine:

function package.writeToc (_)
-- (Simplified from the actual implementation.)
local tocdata = pl.pretty.write(SILE.scratch.tableofcontents)
local tocfile, err = io.open(pl.path.splitext(SILE.input.filenames[1]) .. '.toc', "w")
if not tocfile then return SU.error(err) end
tocfile:write("return " .. tocdata)
tocfile:close()

end

Then the \tableofcontents command reads that file if it is present, and typesets the TOC nodes
appropriately:

self:registerCommand("tableofcontents", function (options, _)
-- (Simplified from the actual implementation.)
local toc = self:readToc()
if toc == false then
SILE.call("tableofcontents:notocmessage")
return

end
SILE.call("tableofcontents:header")
for i = 1, #toc do
local item = toc[i]
SILE.call("tableofcontents:item", {

level = item.level,
pageno = item.pageno,

}, item.label)
end

end)

And the job is done. Well, nearly. Our tableofcontents package now contains a couple of methods
—moveTocNodes and writeToc—that need to be called at various points in the output routine of a class
which uses this package. How do we do that? We simply have to register these methods for them to
be called at the intended points.

function package:_init ()
-- (Simplified from the actual implementation.)
base._init(self)
if not SILE.scratch.tableofcontents then
SILE.scratch.tableofcontents = {}

end
self:loadPackage("infonode")
...
self.class:registerHook("endpage", self.moveTocNodes)
self.class:registerHook("finish", self.writeToc)

end

This concludes our primer on document class design. A few details were’nt addressed, possibly,
but you should now have all the tools at your disposal to create your own classes, or start digging into

10.2 Designing a document class

109

the standard classes and packages with the necessary understanding of their inner working.

Designing Packages & Classes

110

Chapter 11
Designing Inputters & Outputters
Let’s dabble further into SILE’s internals. As mentioned earlier in this manual, SILE relies on “input
handlers” to parse content and construct an abstract syntax tree (AST) which can then be interpreted
and rendered. The actual rendering relies on an “output backend” to generate a result in the expected
target format.

Processing & TypesettingInput
file(s)

inputter

Output
file

Command
processing

AST
nodes

Typesetter
Shaping,

Hyphenation,
Line breaking,

Etc.

Frame
abstraction

Page
breaking

outputter

drawing
functions

The standard distribution includes “inputters” (as we call them in brief) for the SIL language and
its XML flavor,1 but SILE is not tied to supporting only these formats. Adding another input format is
just a matter of implementing the corresponding inputter. This is exactly what third party modules
adding “native” support for Markdown, Djot, and other markup languages achieve. This chapter will
give you a high-level overview of the process.

As for “outputter” backends,most users are likely interested in the one responsible for PDF output.
The standard distribution includes a few other backends: text-only output, debug output (mostly used
internally for regression testing), and a few experimental ones.

11.1 Designing an input handler
Inputters usually live somewhere in the inputters/ subdirectory of either where your first input file
is located, your current working directory, or your SILE path.

11.1.1 Initial boilerplate

A minimum working inputter inherits from the base inputter. We need to declare the name of our
new inputter, its priority order, and (at least) two methods.

When a file or string is processed and its format is not explicitly provided, SILE looks for the first
inputter claiming to know this format. Potential inputters are queried sequentially according to their

1. Actually, SILE preloads three inputters: SIL, XML, and also one for Lua scripts.

priority order, an integer value. For instance,
• The XML inputter has a priority of 2.
• The SIL inputter has a priority of 50.

In this tutorial example, we are going to use a priority of 2. Please note that depending on your
input format and the way it can be analyzed in order to determine whether a given content is in that
format, this value might not be appropriate. At some point, you will have to consider where in the
sequence your inputter needs to be evaluated.

We will return to the topic later below. For now, let’s start with a file inputters/myformat.lua

with the following content.

local base = require("inputters.base")
local inputter = pl.class(base)
inputter._name = "myformat"
inputter.order = 2
function inputter.appropriate (round, filename, _)
-- We will later change it.
return false

end
function inputter:parse (doc)
local tree = {}
-- Later we will work on parsing the input document into an AST tree
return tree

end
return inputter

You have written you very first inputter, or more precisely minimal boilerplate code for one. One
possible way to use it would be to load it from command line, before processing some file in the
supported format:

sile -u inputters.myformat somefile.xy

However, this will not work yet. We must code up a few real functions now.

11.1.2 Content appropriation

What we first need is to tell SILE how to choose our inputter when it is given a file in our input format.
The appropriate()method of our inputter is responsible for providing the corresponding logic. It is
a static method (so it does not have a self argument), and it takes up to three arguments:

• the round, an integer between 1 and 3.
• the file name if we are processing a file (so nil in case we are processing some string directly,

for instance via a raw command handler).
• the textual content (of the file or string being processed).

It is expected to return a boolean value, true if this handler is appropriate and false otherwise.
Earlier, we said that inputters were checked in their priority order. This was not fully complete.

Let’s add another piece to our puzzle: Inputters are actually checked orderly indeed, but three times.
This allows for quick compatiblitity checks to supersede resource-intensive ones.

Designing Inputters & Outputters

112

• Round 1 expects the file name to be checked: for instance, we could base our decision on rec-
ognized file extensions.

• Round 2 expects some portion of the content string to be checked: for instance, we could base
our decision on sniffing for some sequence of characters expected to occur early in the docu-
ment (or any other content inspection strategy).

• Round 3 expects the entire content to be successfully parsed.
For instance, say you are designing an inputter for HTML. The appropriation logic might look as

follows.

function inputter.appropriate (round, filename, doc)
if round == 1 then
return filename:match(".html$")

elseif round == 2 then
local sniff = doc:sub(1, 100)
local promising = sniff:match("<!DOCTYPE html>")

or sniff:match("<html>") or sniff:match("<html ")
return promising or false

end
return false

end

Here, to keep the example simple, we decided not to implement round 3, which would require an
actual HTML parser capable of intercepting syntax errors. This is clearly outside the aim of this tuto-
rial.2 You should nevertheless have a basic understanding of how inputters are supposed to perform
format detection.

11.1.3 Content parsing

Once SILE finds an inputter appropriate for the content, it invokes its parse()method. The parser is
expected to return a SILE document tree, so this is where your task really takes off. You have to parse
the document, build a SILE abstract syntax tree, and wrap it into a document. The general structure
will likely look as follows, but the details heavily depend on the input language you are going to
support.

function inputter:parse (doc)
local ast = myOwnFormatToAST(doc) -- parse doc and build a SILE AST
local tree = {{
ast,
command = "document",
options = { ... },

}}

2. The third round is also the most “expensive” in terms of computing, so clever optimizations like caching
the results of fully parsing the content may be called for here, but we are not going to consider the topic now.

113

return tree
end

For the sake of a better illustration, we are going to pretend that our input format uses square
brackets to mark italics. Lets say our plain text input format is just all about italics or not, and let us
go for a naive and very low-level solution.

function inputter:parse (doc)
local ast = {}
for token in SU.gtoke(doc, "%[[^]]*%]") do
if token.string then

ast[#ast+1] = token.string
else

-- bracketed content
local inside = token.separator:sub(2, #token.separator - 1)
ast[#ast+1] = {
[1] = inside,
command = "em",
id = "command",
-- our naive logic does not keep track of positions in the input stream
lno = 0, col = 0, pos = 0

}
end

end
local tree = {{
ast,
command = "document",

}}
return tree

end

Of course, real input formats will need more than that, perhaps parsing a complex grammar with
LPEG or other tools. SILE also provides some helpers to facilitate AST-related operations. Again, we
just kept it as simple as possible here, so as to describe the concepts and the general workflow and
get you started.

11.1.4 Inputter options

In the preceding sections, we explained how to implement a simple input handler with just a few
methods being overridden. The other default methods from the base inputter class still apply. In
particular, options passed to the \include commands are passed onto our inputter instance and are
available in self.options.

11.2 Designing an output handler
Outputters usually live somewhere in the outputters/ subdirectory of either where your first input
file is located, your current working directory, or your SILE path.

All output handlers inherit from a base outputter. It is an abstract class, providing just one con-
crete method, and defining a bunch of methods that any actual outputter has to override for the
specifics of its target format.

Designing Inputters & Outputters

114

We first need to declare the name of our new outputter, as well as the default file extension for
the output file, which will be appended to the base name of the main input file if the user does not
provide an explicit output file name on their command line.

local outputter = pl.class(base)
outputter._name = "myformat"
outputter.extension = "ext"

And then, we have to provide an implementation for all the low-level output methods for a variety
of things (cursor position, page switches, text and image handling, etc.)

We are not going to enter into the details here. First, there are quite a lot of methods to take care
of. Moreover, the API is not fully stable here, as needs for other output formats beyond those provided
in the core distribution may call for different strategies. Still, you might want to study the libtexpdf
outputter, by far themost complete in terms of features, which is the standard way to generate a PDF,
as it names implies, using a PDF library extracted from the TeX ecosystem and adapted to SILE’s need.

11.2 Designing an output handler

115

Chapter 12
Advanced Class Files 1: SILE As An XML Processor
Nowwe are ready to look at a working example of writing a class to turn an arbitrary XML format into
a PDF file. We’ll be looking at the DocBook processor that ships with SILE. DocBook is an XML format
for structured technical documentation. DocBook itself doesn’t encode any presentation information
about how its various tags should be rendered on a page, and so we shall have to make all the presen-
tation decisions for ourself.

Since DocDook itself doesn’t specify anything about presentation such as paper size, youmay need
to supply values either on the command line or using a preamble. When you use the -c docbook

command line option to SILE, SILE will use the docbook class in spite of any document declaration.
In addition, options such as paper size could be set; for example, -O papersize=legal.

The class initialization for DocBoox isn’t too fancy; it just loads up a couple packages that will get
used later.

Much of the example code in this chapter is in SIL format using macros. The actual docbook class cur-
rently uses Lua functions to specify these commands. The functionality is the same, but the Lua syntax
is more flexible and recommended for most use cases. The SILE \definemacros shown here can still be
used in a preamble file if desired.

Now we can start defining SILE commands to render XML elements. Most of these are fairly
straightforward so we will not dwell on them too much. For instance, DocBook has tags like <code>,
<filename>, and <guimenu> which should all be rendered in a monospaced typewriter font. To make
it easier to customize the class, we abstract out the font change into a single command:

\define[command=docbook-ttfont]{\font[family=Inconsolata,size=2ex]{\process}}

Now we can define our tags for <code> and other similar tags:

\define[command=code]{\docbook-ttfont{\process}}
\define[command=filename]{\docbook-ttfont{\process}}
\define[command=guimenu]{\docbook-ttfont{\process}}
\define[command=guilabel]{\docbook-ttfont{\process}}
\define[command=guibutton]{\docbook-ttfont{\process}}
\define[command=computeroutput]{\docbook-ttfont{\process}}

If an end user wants things to look different, they can redefine the docbook-ttfont command and
get a different font.

12.1 Handling titles

So much for simple tags. Things get interesting when there is a mismatch between the simple format
of SILE macros and the complexity of DocBook markup.

We have already seen an example of the <link> tag where we also need to process XML attributes,
so we will not repeat that here. Let’s look at another area of complexity: the apparently-simple
<title> tag. The reason this is complex is that it occurs in different contexts—sometimes more than
once within a context—and it should often be rendered differently in different contexts. For instance,
<article><title>... will look different to <section><title>.... Inside an <example> tag, the title
will be prefixed by an example number; inside a <bibliomixed> bibliography entry, the title should
not be set off as a new block but should be part of the running text, and so on.

What we will do to deal with this situation is provide a very simple definition of <title>, but when
processing the containing elements of <title> (such as <article> and <example>), we will process
the title ourselves.

Let’s look at <example>, which has the added complexity of needing to keep track of an article
number.

self:registerCommand("example", function(options,content)
SILE.call("increment-counter", {id="Example"})
SILE.call("bigskip")
SILE.call("docbook-line")
SILE.call("docbook-titling", {}, function()
SILE.typesetter:typeset("Example".." ".. class:formatCounter(SILE.scratch.counters.Example]))

\docbook-line is a command that we’ve defined in the docbook.sil macros file to draw a line
across the width of the page to set off examples and so on. \docbook-titling is a command similarly
defined in docbook.sil which sets the default font for titling and headers. Once again, if someone
wants to customize the look of the output we make it easier for them by giving them simple, com-
partmentalized commands to override.

So far so good, but how do we extract the <title> tag from the content abstract syntax tree? SILE
does not provide XPath or CSS-style selectors to locate content form within the DOM tree;1 instead
there is a simple one-level function called SU.ast.findInTree() which looks for a particular tag or
command name within the immediate children of the current tree:

local t = SU.ast.findInTree(content, "title")
if t then

SILE.typesetter:typeset(": ")
SILE.process(t)

We’ve output Example 123 so far, and now we need to say : Title. But we also need to ensure that
the <title> tag doesn’t get processed again when we process the content of the example:

1. Patches, as they say, are welcome.

Advanced Class Files 1: SILE As An XML Processor

118

docbook.wipe(t)

docbook.wipe is a little helper function which nullifies the content of a Lua table:

function docbook.wipe(tbl)
while((#tbl) > 0) do tbl[#tbl] = nil end

end

Let’s finish off the <example> example by skipping a bit between the title and the content, process-
ing the content and drawing a final line across the page:

end
end)
SILE.call("smallskip")
SILE.process(content)
SILE.call("docbook-line")
SILE.call("bigskip")

end)

It happens that the <example>, <table>, and <figure> tags are pretty equivalent: they produce
numbered titles and then go on to process their content. So in reality we actually define an abstract
countedThing method and define these commands in terms of that.

12.2 Sectioning
DocBook sectioning is a little different to the SILE book class. <section> tags can be nested; to start a
subsection, you place another <section> tag inside the current <section>. So in order to know what
level we are currently on, we need a stack. We also need to keep track of what section number we are
on at each level. For instance, with the expected section numbers and titles in XML comments:

<section><title>A</title> : \autodoc:example{1. A}
<section><title>B</title>: \autodoc:example{1.1 B}
</section>
<section><title>C</title>: \autodoc:example{1.2 C}

<section><title>D</title>: \autodoc:example{1.2.1 D}
</section>

</section>
<section><title>E</title>: \autodoc:example{1.3 E}

</section>
<section><title>F</title>: \autodoc:example{2. F}

So, we will keep two variables: the current level, and the counters for all of the levels so far. Each
time we enter a section, we increase the current level counter:

self:registerCommand("section", function (options, content)
SILE.scratch.docbook.seclevel = SILE.scratch.docbook.seclevel + 1

We also increment the count at the current level, while at the same time wiping out any counts
we have for levels above the current level (if we didn’t do that, then E in our example above would be
marked 1.3.1):

12.2 Sectioning

119

SILE.scratch.docbook.seccount[SILE.scratch.docbook.seclevel] =
(SILE.scratch.docbook.seccount[SILE.scratch.docbook.seclevel] or 0) + 1

while #(SILE.scratch.docbook.seccount) > SILE.scratch.docbook.seclevel do
SILE.scratch.docbook.seccount[#(SILE.scratch.docbook.seccount)] = nil

end

Now we find the title, and prefix it by the concatenation of all the seccounts:

local title = SU.ast.findInTree(content, "title")
local number = table.concat(SILE.scratch.docbook.seccount, '.')
if title then
SILE.call("docbook-section-"..SILE.scratch.docbook.seclevel.."-title",{},function()

SILE.typesetter:typeset(number.." ")
SILE.process(title)

end)
docbook.wipe(title)

end

Finally we can process the content of the tag, and decrease the level count as we leave the </

section> tag:

SILE.process(content)
SILE.scratch.docbook.seclevel = SILE.scratch.docbook.seclevel - 1

end)

Advanced Class Files 1: SILE As An XML Processor

120

Chapter 13
Further Tricks
We’ll conclude our tour of SILE by looking at some tricky situations which require further program-
ming.

13.1 Parallel text
The example https://sile-typesetter.org/examples/parallel.sil contains a rendering of Chap-
ter 1 of Matthew’s Gospel in English and Greek. It uses the diglot class to align the two texts side-by-
side. The latter provides the \left and \right commands to start entering text on the left column or
the right column respectively, and the \sync command to ensure that the two columns are in sync
with each other. It’s an instructive example of what can be done in a SILE class, so we will take it apart
and see how it works.

The key thing to note is that the SILE typesetter is an object (in the object-oriented programming
sense). Normally, it’s a singleton object—that is, one typesetter is used for typesetting everything in
a document. But there’s no reason why we can’t have more than one. In fact, for typesetting parallel
texts, the simplest way to do things is to have two typesetters, one for each column, and have them
communicate with each other at various points in the operation.

Let’s begin diglot.lua as usual by setting up the class and declaring our frames:

local plain = require("classes.plain");
local diglot = pl.class(plain)
diglot._name = "diglot"
function diglot:_init (options)
plain._init(self, options)
self:loadPackage("counters")
SILE.scratch.counters.folio = { value = 1, display = "arabic" };
diglot:declareFrame("a", {left = "8.3%pw", right = "48%pw",

top = "11.6%ph", bottom = "80%ph" });
diglot:declareFrame("b", {left = "52%pw", right = "100%pw - left(a)",

top = "top(a)", bottom = "bottom(a)" });
diglot:declareFrame("folio", {left = "left(a)", right = "right(b)",

top = "bottom(a)+3%ph",bottom = "bottom(a)+8%ph" });
end

Next we create two new typesetters, one for each column, and we tell each one how to find the
other:

function diglot:_init (options)
self.leftTypesetter = SILE.typesetters.base()
self.rightTypesetter = SILE.typesetters.base()
self.rightTypesetter.other = self.leftTypesetter
self.leftTypesetter.other = self.rightTypesetter
return plain._init(self)

end

Each columnneeds its own font, so we provide commands to store this information. The \leftfont
and \rightfont macros simply store their options to be passed to the \font command every time
\left and \right are called. (This is because the fonts are controlled by global settings rather than
being typesetter-specific.)

function diglot:registerCommands()
plain.registerCommands(self)
self:registerCommand("leftfont", function(options, content)
SILE.scratch.diglot.leftfont = options

end, "Set the font for the left side")
self:registerCommand("rightfont", function(options, content)
SILE.scratch.diglot.rightfont = options

end, "Set the font for the right side")
-- Other commands will come here...

end

Next come the commands for sending text to the appropriate typesetter. The current typesetter
object used by the system is stored in the variable SILE.typesetter. Many commands and packages
call methods on this variable, so we need to ensure that this is set to the typesetter object that we
want to use. We also want to turn off paragraph detection, as we will be handling the paragraphing
manually using the \sync command:

self:registerCommand("left", function(options, content)
SILE.settings:set("typesetter.parseppattern", -1)
SILE.typesetter = diglot.leftTypesetter;
SILE.call("font", SILE.scratch.diglot.leftfont, {})

end, "Begin entering text on the left side")
self:registerCommand("right", function(options, content)
SILE.settings:set("typesetter.parseppattern", -1)
SILE.typesetter = diglot.rightTypesetter;
SILE.call("font", SILE.scratch.diglot.rightfont, {})

end, "Begin entering text on the right side")

The meat of the matter comes in the \sync command, which ensures that the two typesetters are
aligned. Every time we call \sync, we want to ensure that they are both at the same position on the
page. In other words, if the left typesetter has gone further down the page than the right one, we need
to insert some blank space onto the right typesetter’s output queue to get them back in sync, and vice
versa.

SILE’s page builder has a method called SILE.pagebuilder:collateVboxeswhich bundles a bunch
of vertical boxes into one. We can use this method to bundle up each typesetter’s output queue and
measure the height of the combined vbox. (Of course, it’s possible to sum the heights of each box on
the output queue by hand, but this achieves the same goal a bit more cleanly.) Next we end each para-
graph—after adding the glue so that paragraph skips do not get in the way—and go back to handling
paragraphing as normal.

self:registerCommand("sync", function()
local lVbox = SILE.pagebuilder:collateVboxes(

diglot.leftTypesetter.state.outputQueue
)
local rVbox = SILE.pagebuilder:collateVboxes(

Further Tricks

122

diglot.rightTypesetter.state.outputQueue
)
if (rVbox.height > lVbox.height) then

diglot.leftTypesetter:pushVglue({ height = rVbox.height - lVbox.height })
elseif (rVbox.height < lVbox.height) then

diglot.rightTypesetter:pushVglue({ height = lVbox.height - rVbox.height })
end
diglot.rightTypesetter:leaveHmode();
diglot.leftTypesetter:leaveHmode();
SILE.settings:set("typesetter.parseppattern", "\n\n+")

end)

Now everything is ready apart from the output routine. In the output routine we need to ensure, at
the start of each document and the start of each page, that each typesetter is linked to the appropriate
frame. The default newPage routine will do this for one typesetter every time we open a new page, but
it doesn’t know that we have another typesetter object to set up as well. So we also need to make sure
that, no matter which typesetter causes an new-page event, the other typesetter also gets correctly
initialized:

function diglot:newPage (self)
plain.newPage(self)
if SILE.typesetter == diglot.leftTypesetter then
SILE.typesetter.other:initFrame(SILE.getFrame("b"))
return SILE.getFrame("a")

else
SILE.typesetter.other:initFrame(SILE.getFrame("a"))
return SILE.getFrame("b")

end
end

Finally, when one typesetter causes an end-of-page event, we need to ensure that the other type-
setter is given the opportunity to output its queue to the page as well:

function diglot:endPage = ()
SILE.typesetter.other:leaveHmode(1)
plain.endPage(self)

end

At the end of the document, we will use the emergency chuck method. Where leaveHmode means
“call the page builder and see there’s enough material to build a page,” chuck means “you must get
rid of everything on your queue now.” We add some infinitely tall glue to the other typesetter’s queue
to help the process along:

function diglot:finish ()
table.insert(SILE.typesetter.other.state.outputQueue, SILE.types.node.vfillglue())
SILE.typesetter.other:chuck()
plain.finish(self)

end

And there you have it: a class which produces balanced parallel texts using two typesetters at once.

13.2 Sidenotes

13.2 Sidenotes

123

One SILE project needed two different kinds of sidenotes: margin notes and gutter notes.

Sidenotes can be seen as a simplified form of parallel text. With a true parallel layout, neither
the left or the right typesetter is “in charge”—either can fill up the page and then inform the other
typesetter that they need to catch up. In the case of sidenotes, there’s a well-defined main flow of
text, with annotations having to work around the pagination of the typeblock.

There are a variety of ways that we could implement these sidenotes. As it happened, we chose
a different strategy for the margin notes and the gutter notes. Cross-references in the gutter could
appear fairly frequently, and so needed to “stack up” down the page: they need to be at least on a level
with the verse that they relate to, but could end up further down the page if there are a few cross-
references close to each other. Markings in the margin, on the other hand, were guaranteed not to
overlap.

We’ll look at themarginmarking first.We’ll implement this as a special zero-width hbox (what TeX
would call a \special) which, although it lives in the output stream of the main typeblock, actually
outputs itself by marking the margin at the current vertical position in the typeblock. In the example
above, there will be a special hbox just before the word “there” in the first line.

First we need to find the appropriate margin frame and find its left boundary:

function discovery:typesetProphecy (symbol)
local margin = self:oddPage() and

SILE.getFrame("rMargin") or SILE.getFrame("lMargin")
local target = margin:left()

Next, we call another command to produce the symbol itself; this allows the book designer to
change the symbols at the SILE level rather than having to mess about with the Lua file. We then
wrap the output of the command into a hbox. Here, note that we do not use the \hbox command: it
would put the box into the typesetter’s output node queue, but we don’t want it to appear in the main
typeblock. So we just ask the typesetter to build the box and return it.

local hbox = SILE.typesetter:makeHbox(function ()
SILE.call("prophecy-"..symbol.."-mark")

end)

What we dowant in the output queue is our special hbox node which will put the marking into the
margin. This special hbox has no impact on the current line—it has no width, height, or depth—and
it contains a copy of the symbol that we stored in the hbox variable.

Further Tricks

124

SILE.typesetter:pushHbox({
width= 0,
height = 0,
depth= 0,
value= hbox,

Finally we need to write the routine which outputs this hbox. Box output routines receive three
parameters: the box itself, the current typesetter (which knows the frame it is typesetting into, and
the frame knows where it must go), and a variable representing the stretchability or shrinkability of
the line. (We don’t need that for this example.)

What our output routine should do is: save a copy of our horizontal position, so that we can restore
it later as we carry on outputting other boxes; jump across to the left edge of the margin, which we
computed previously; tell the symbol that we’re carrying with us to output itself; and then jump back
to where we were:

outputYourself = function (self, typesetter, line)
local saveX = typesetter.frame.state.cursorX;
typesetter.frame.state.cursorX = target
self.value:outputYourself(typesetter,line)
typesetter.frame.state.cursorX = saveX

end
})

end

This was a quick-and-dirty version of sidenotes (in twenty lines of code!) which works reasonably
well for individual symbolswhich are guaranteed not to overlap. For the gutter notes, which are closer
to true sidenotes, we need to do something a bit more intelligent. We’ll take a similar approach to
when we made the parallel texts, by employing a separate typesetter object.

As before, we’ll create the object, and ensure that at the start of the document and at the start of
each page it is populated correctly with the appropriate frame:

local base = require("classes.base")
local discovery = pl.class(base)
discovery._name = "discovery"
function discovery:_init ()
base._init(self)
local gutter = self:oddPage() and

SILE.getFrame("rGutter") or SILE.getFrame("lGutter")
self.innerTypesetter = self.typesetters.base(gutter)
...
return self

end
function discovery:newPage ()
self.innerTypesetter:leaveHmode(1)
local gutter = self:oddPage() and

SILE.getFrame("rGutter") or SILE.getFrame("lGutter")
self.innerTypesetter = SILE.typesetters.base(gutter)
...
return base.newPage(self);

end

Now for the function which actually handles a cross-reference. As with the parallels example, we
start by totaling up the height of the material processed on the current page by both the main type-

13.2 Sidenotes

125

setter and the cross-reference typesetter:

function discovery:typesetCrossReference (xref)
self.innerTypesetter:leaveHmode(1)
local innerVbox =
SILE.pagebuilder:collateVboxes(self.innerTypesetter.state.outputQueue)

local mainVbox =
SILE.pagebuilder:collateVboxes(SILE.typesetter.state.outputQueue)

This deals with the completed paragraphs which have already been put into the output queue. The
problem here is that we do not want to end a paragraph between two verses: if we are mid-paragraph
while typesetting a cross-reference, we need to work out what the height of the material would have
been if we were to put it onto the output queue at this point. So, we take the SILE.typesetter object
on a little excursion.

Firstwe take a copy of the current node queue, and thenwe call the typesetter’s pushStatemethod.
This initializes the typesetter anew, while saving its existing state for later. Since we have a new
typesetter, its node queue is empty, and so we feed it the nodes that represent our paragraph so far.
Then we tell the typesetter to leave horizontal mode, which will cause it to go away and calculate
line breaks, leading, paragraph height, and so on. We box up its output queue, and then return to
where we were before. Now we have a box which represents what would happen if we set the current
paragraph up to the point that our cross-reference is inserted. The height of this box is the distance
we need to add to mainVbox to get the vertical position of the cross-reference mark.

local unprocessedNodes = pl.tablex.deepcopy(SILE.typesetter.state.nodes)
SILE.typesetter:pushState()
SILE.typesetter.state.nodes = unprocessedNodes
SILE.typesetter:leaveHmode(1)
local subsidiary = SILE.pagebuilder:collateVboxes(SILE.typesetter.state.outputQueue)
SILE.typesetter:popState()
mainVbox.height = mainVbox.height + subsidiary.height

The 1 argument to leaveHmodemeans “you may not create a new page here.”

In most cases, the cross-reference typesetter hasn’t gotten as far down the page as the body text
typesetter, so we tell the cross-reference typesetter to shift itself down the page by the difference.
Unlike the parallel example, where either typesetter could tell the other to open up additional vertical
space, in this case it’s okay if the cross-reference appears a bit lower than the verse it refers to.

if (innerVbox.height < mainVbox.height) then
self.innerTypesetter:pushVglue({ height = mainVbox.height - innerVbox.height })

end

At this point the two typesetters are now either aligned, or the cross-reference typesetter has gone
further down the page than the verse it refers to. Now we can output the cross-reference itself.

SILE.settings:temporarily(function()
SILE.settings:set("document.baselineskip", SILE.types.node.vglue("7pt"))

Further Tricks

126

SILE.call("font", {size = "6pt", family="Helvetica", weight="800"}, {})
self.innerTypesetter:typeset(SILE.scratch.chapter..":"..SILE.scratch.verse.." ")
SILE.call("font", {size = "6pt", family="Helvetica", weight="200"}, {})
self.innerTypesetter:typeset(xref)
self.innerTypesetter:leaveHmode()
self.innerTypesetter:pushVglue({ height = SILE.types.length({length = 4})})

end)
end

We haven’t used SILE.call here because it performs all its operations on the default typesetter. If we
wanted to make things cleaner, we could swap typesetters by assigning discovery.innerTypesetter
to SILE.typesetter and then calling ordinary commands, rather than doing the settings and glue in-
sertion “by hand”.

In the future it may make sense for there to be a standard sidenotes package in SILE, but it has
been instructive to see a couple of “non-standard”examples to understand how the internals of SILE
can be leveraged to create such a package. Your homework is to create one!

13.3 SILE as a library
So far we’ve been assuming that you would want to run SILE as a processor for an existing document.
But what if you have a program which produces or manipulates data, and you would like to produce
PDFs from within your application? In that case, it may be easier and provide more flexibility to use
SILE as a library.

At https://sile-typesetter.org/examples/byhand.lua, you will find an example of a Lua script
which produces a PDF from SILE. It’s actually fairly simple to use SILE from within Lua—the difficult
part is setting things up. Here’s how to do it.

require("core.sile")
SILE.outputFilename = "byhand.pdf"
local plain = require("plain", "classes")
SILE.documentState.documentClass = plain;
local firstFrame = plain:init()
SILE.typesetter:init(firstFrame)

Loading the SILE core library also loads up all the other parts of SILE. We need to set the output
file name and load the class that we want to use to typeset the document with. We then need to tell
SILE what class we are actually using, call init on the class to get the first frame for typesetting, and
then initialize the typesetter with this frame. This is all that SILE does to get itself ready to typeset.

After this, all the usual API calls will work: SILE.call, SILE.typesetter:typeset, and so on.

SILE.typesetter:typeset(data)

The only thing to be careful of is the need to call the finishmethod on your document class at the
end of processing to finish off the final page:

13.3 SILE as a library

127

plain:finish()

13.4 Debugging
When you are experimenting with SILE and its API, you may find it necessary to get further informa-
tion about what SILE is up to. SILE has a variety of debugging switches that can be turned on by the
command line or by Lua code.

Running SILE with the --debug facility switch will turn on debugging for a particular area or
areas of SILE’s operation:

• ast provides information about how SILE parsed the document into an abstract syntax tree.
• break provides (copious) information about the line breaking algorithm.
• fonts shows what font families and attributes were attempted and what font files were used

to supply them.
• frames draws red boxes around the frames on the page.
• hboxes draws red boxes around all the hboxes on the page.
• pagebuilder helps to debug problems when determining page breaks.
• macros notes when new functions are defined as macros from declarative markup.
• makedeps lists resources that were determined to be dependencies (use with -m).
• profile turns on Lua profiling, which gives a report on where the Lua interpreter is spending

its time while processing your document. It also makes SILE go really, really slow.
• pushback notes how already-shaped content that didn’t fit in frames is processed as it migrates

to following ones.
• tokenizer shows how input content gets broken up into segments before shaping.
• typesetter provides general debugging for the typesetter: turning characters into boxes,

boxes into lines, lines into paragraphs, and paragraphs into pages.
• vboxes provides even more information about page break decisions, showing you what vboxes

were in SILE’s queue when considering the breaking.
• versions gives a report on the versions of libraries and fonts in use. Please include this infor-

mation when reporting bugs in SILE!
• Any package or other area of SILE’s operation may define their own debugging tags; the in-
sertions package does this, as do the Japanese and Uyghur language support systems (--debug
uyghur). Often the debug flag is the name of the package or the function.

Multiple facilities can be turned on by adding the flag multiple times or by separating them with
commas. For example, --debug typesetter,break will turn on debugging information for the type-
setter and line breaker.

From Lua, you can add entries to the SILE.debugFlags table to turn on debugging for a given

Further Tricks

128

facility. This can be useful for temporarily debugging a particular operation:

SILE.debugFlags.typesetter = true
SILE.typesetter:leaveHmode()
SILE.debugFlags.typesetter = false

From a package’s point of view, you canwrite debugging information by calling the SU.debug func-
tion (SU stands for SILE Utilities, and contains a variety of auxiliary functions used throughout SILE):

SU.debug("mypackage", "Doing a thing")

When an error occurs, for example when writing custom scripts, its traceback (stack trace) can be
printed via the --trace, or -t switch:

$ sile -t broken.sil
SILE v0.15.5 (LuaJIT 2.1.ROLLING) [Rust]
<broken.sil>
Error detected:
packages/inline-footnotes.lua:9: attempt to call a nil value (global
'thisPageInsertionBoxForClass')
stack traceback:
packages/inline-footnotes.lua:9: in upvalue 'func'
core/utilities.lua:398: in field '?'
core/inputs-common.lua:66: in function 'core/sile.process'
core/inputs-texlike.lua:149: in field 'process'
core/sile.lua:196: in function 'core/sile.readFile'
./sile:56: in function <./sile:56>
[C]: in function 'xpcall'
./sile:56: in main chunk
[C]: in ?

Sometimes it’s useful for you to try out Lua code within the SILE environment; SILE contains a
REPL (read-evaluate-print loop) for you to enter Lua code and print the results back to you. If you call
SILE with no input file names, it enters the REPL:

SILE v0.15.5 (LuaJIT 2.1.ROLLING) [Rust]
> l = SILE.types.length("22mm")
> l.length
22mm
> l.absolute()
62.3622054pt

At any point during the evaluation of Lua commands, you can call SILE.repl:enter() to enter the
REPL and poke around; hitting Ctrl-D will end the REPL and return to processing the document.

Two alternative backends are also useful for debugging. Both use the same shaping engine as the
default libtexpdf backend, but instead of actually generating a PDF they only output some textual
information about what’s going on. The debug backend (activated by calling sile -b debug <input>)
will generate a log file with a .debug extension detailing each string and it’s exact output loction. A
simpler text backend (sile -b text <input>) will output a .txt file with just the text strings with
rough approximations of line breaks. Either may be sent to STDOUT instead of files using -o /dev/

stdout.

13.5 Conclusion

129

13.5 Conclusion
We’ve seen not just the basic functionality of SILE but also given you some examples of how to extend
it in new directions; how to use the SILE API to solve difficult problems in typesetting. Go forth and
create your own SILE packages!

Further Tricks

130

	What is SILE?
	SILE versus MS Word and friends
	SILE versus TeX and company
	SILE versus InDesign and competitors
	Conclusion

	Getting Started
	Installing SILE
	macOS
	Arch Linux
	Fedora
	OpenSUSE
	Ubuntu
	NetBSD
	NixOS or under Nix on any platform
	Void Linux
	Running via Docker
	Installing from source
	Notes for Windows users

	Selecting a text editor
	Running SILE
	A basic document
	Let’s do something cool
	Running SILE remotely as a CI job

	Installing third-party packages
	Finding Lua version in use for running SILE

	SILE’s Input
	Concerning input formats
	The SIL flavor
	Defining the paper size
	Setting orientation as landscape
	Full bleed printing
	Ordinary text
	Commands
	Environments
	SIL grammar specifications

	The XML syntax

	Some Useful SILE Commands
	Fonts
	Document structure
	Chapters and sections
	Footnotes

	Paragraph indentation
	Horizontal spacing
	Vertical spacing
	Text alignment
	Line and page breaks
	Including other files and code
	Including raw inline content

	SILE Packages
	Loading a package
	The SILE ecosystem
	Graphics
	image
	svg
	converters

	Text & Characters
	dropcaps
	lorem
	textcase
	unichar
	url
	gutenberg

	Colors
	color
	background

	Fillers & Rules
	leaders
	rules

	Boxes & Effects
	raiselower
	rebox
	rotate
	scalebox

	Mathematical formulas
	Specialized environments
	lists
	pullquote
	verbatim
	specimen
	boustrophedon
	chordmode

	Advanced font features
	features
	font-fallback

	Advanced line-spacing
	grid
	linespacing

	Document parts
	folio
	footnotes
	tableofcontents

	Bibliographies & Indexes
	bibtex
	indexer

	Miscellaneous utilities
	date
	debug
	ifattop
	retrograde

	Frames and page layouts
	cropmarks
	frametricks
	twoside
	masters
	break-firstfit
	balanced-frames

	Low-level internal packages
	bidi
	color-fonts
	counters
	insertions
	infonode
	inputfilter
	chapterverse
	parallel
	autodoc
	pdf
	pdfstructure

	Highly experimental packages

	SILE Macros and Commands
	A simple macro
	Macro with content
	Nesting macros

	SILE Settings
	Spacing settings
	Line spacing settings
	Word spacing settings
	Letter spacing settings

	Typesetter settings
	Paragraphing
	Automated italic correction

	Linebreaking settings
	Shaper settings
	Settings from Lua

	Multilingual Typesetting
	Selecting languages
	Direction
	Hyphenation
	Localization
	Support for specific languages
	Amharic
	Croatian
	Czech
	Esperanto
	French
	Polish
	Portuguese
	Slovak
	Spanish
	Turkish
	Japanese / Chinese
	Syllabic languages
	Uyghur

	The Nitty Gritty
	Measurements and lengths
	Boxes, glue, and penalties
	Kerns
	The typesetter
	Frames

	Designing Packages & Classes
	Designing a package
	Implementing a bare package
	Defining commands
	Defining settings
	Defining raw handlers
	Loading other packages
	Registering class hooks

	Designing a document class
	Implementing a bare class
	Defining commands, settings, etc.
	Defining class options
	Changing the default page layout
	Modifying class output routines
	Interacting with class hooks

	Designing Inputters & Outputters
	Designing an input handler
	Initial boilerplate
	Content appropriation
	Content parsing
	Inputter options

	Designing an output handler

	Advanced Class Files 1: SILE As An XML Processor
	Handling titles
	Sectioning

	Further Tricks
	Parallel text
	Sidenotes
	SILE as a library
	Debugging
	Conclusion

