Theorem For all $n \in \mathbb{N}$:

$$\sum_{i=0}^{n} i = \frac{n(n + 1)}{2}$$

Theorem For all $n \in \mathbb{N}$:

$$\sum_{i=0}^{n} i^2 = \frac{n(n + 1)(2n + 1)}{6}$$

Theorem (Divergence theorem) For any volume V and continuously differentiable vector field F:

$$\iiint_{V} \nabla \cdot F \, dV = \iint_{\partial V} F \cdot dS$$

where ∂V is the border of V.

Definition (Fibonacci sequence) Let u_n be the sequence defined by:

$$\begin{cases}
 u_0 & = 1 \\
 u_1 & = 1 \\
 u_{n+2} & = u_{n+1} + u_n, \ \forall n \in \mathbb{N}
\end{cases}$$

Theorem For all $n \in \mathbb{N}$:

$$u_n = \frac{\phi^n - \psi^n}{\phi - \psi}$$

where ϕ and ψ are the roots of $x^2 - x - 1$.

1