
Laplace’s method
Suppose 𝑓 (𝑥) is a twice continuously diसerentiable function on [𝑎, 𝑏], and there exists a unique
point 𝑥0 ∈ (𝑎, 𝑏) such that:

𝑓 (𝑥0) = max
𝑥∈[𝑎,𝑏]

𝑓 (𝑥) and 𝑓 เ(𝑥0) < 0.
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Euler Product Formula
Let’s take 𝑠 ∈ ℂ. The Euler Product Formula, when ℜ(𝑠) > 1, is given by:
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Stirling’s formula
It is also called Stirling’s approximation for factorials:
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Also frequently written as:
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One can easily derive the following limit from Stirling’s formula:
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